
Karl Voit

TagTrees: Improving Personal
Information Management Using

Associative Navigation

Dissertation

Graz University of Technology

Institute for Softwaretechnology
Head: Univ.-Prof. Dipl-Ing. Dr. techn. Wolfgang Slany

Supervisor: Univ.-Prof. Dipl-Ing. Dr. techn. Wolfgang Slany
Co-Supervisor: Ao. Univ.-Prof. Dipl-Ing. Dr. techn. Keith Andrews

Graz, November 1, 2012

This document was written with gnu Emacs, is set in Palatino, compiled
with pdfLATEX2e and Biber.

All figures, which do not refer to an external source, are made by the author
using Ipe, the extensible drawing editor.

The LATEX template, which was made by the author, is based on KOMA
script and can be found online: https://github.com/novoid/LaTeX-KOMA-
template.

Paper: Bio Top 3 extra (80 g) (Mondi Neusiedler).

https://www.gnu.org/software/emacs/
http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://ipe7.sourceforge.net/
http://www.komascript.de/
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template
https://github.com/novoid/LaTeX-KOMA-template

Statutory Declaration

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
marked all material, which has been quoted, either literally or by content
from the used sources.

Graz,

Date Signature

Eidesstattliche Erklärung 1

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig ver-
fasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und
die den benutzten Quellen wörtlich und inhaltlich entnommene Stellen als
solche kenntlich gemacht habe.

Graz, am

Datum Unterschrift

1. Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom
10.11.2008; Genehmigung des Senates am 1.12.2008

iii

Acknowledgments

At this point I would like to thank the wonderful group of students who
were part of this research project over the last four years: Georg Achleitner,
Johannes Anderwald, Gerulf Binder, Laurens De Vocht, Andrea Denger,
Christoph Friedl, Daniel Fussenegger, Annemarie Harzl, Vesna Krnjic, Man-
fred Oberlerchner, Michael Pirrer, Florian Praxmair, Georg Schober, Alexan-
der Skiba, Barbara Stadlhofer, Matija Striga, Josef Wachtler, Mario Wiedner,
Armin Wieser, and Wolfgang Wintersteller. With your impressive passion
and great contributions you made all this possible. It was a pleasure work-
ing with you and you taught me many things!

My supervisors, Wolfgang Slany and Keith Andrews, provided me guid-
ance and help when I was unsure or helpless. I enjoyed wonderful discus-
sions and your opinions were very valuable to me.

Furthermore, I would like to thank my colleagues and predecessors in Per-
sonal Information Management (pim) research. Your work has inspired me
so many times and I still love to read your books and papers. Doing re-
search in this topic is very rewarding to me and enormously relevant to
countless people out there!

My beloved parents, Elisabeth and Karl Voit, always encouraged me on this
journey called life. Valuing education they made it possible for me to learn
interesting things and become the person I am today for which I am very
grateful.

Last, but surely not least, I would like to thank Petra Heidenkummer who
also contributed to my research work so many times with discussions,
opinions and encouraging support when I needed it. I love you, my dear!

Karl Voit

v

Contents

Abstract 1

1 Introduction 3

2 Research Background 9
2.1 PIM Strategies . 10

2.1.1 As We May Think . 10

2.1.2 How People Organize Their Desk 12

2.1.3 The Psychology of PIM 13

2.1.4 Cross-Tool Behavior and Longitudinal Data 17

2.2 PIM Tools . 21

2.2.1 Sketchpad . 21

2.2.2 NLS . 22

2.2.3 Lifestreams . 23

2.2.4 TimeScape . 25

2.2.5 Remembrance Agent . 26

2.2.6 Presto . 28

2.2.7 Haystack . 29

2.2.8 WorkspaceMirror . 32

2.2.9 Stuff I’ve Seen . 33

2.2.10 Phlat . 37

2.2.11 Attribute Browser . 41

2.2.12 MyLifeBits . 42

2.2.13 Semantic File System . 45

2.2.14 SemFS . 46

2.2.15 TagFS . 47

2.2.16 hFAD . 47

2.2.17 Feldspar . 49

2.2.18 Personal Project Planner, Planz 51

vi

Contents

2.2.19 LiFiDeA and Associative Navigation 55

2.2.20 Faceted Search, Faceted Navigation 59

3 Challenges 63
3.1 Changing Environments . 63

3.1.1 Increasing Number of Files 64

3.1.2 Non-Textual Content . 66

3.1.3 Scattered Storage Locations 67

3.2 Users . 68

3.2.1 Time Spent While Retrieving Information 68

3.2.2 The Need for Diverse Interfaces 69

3.2.3 Teaching and Learning PIM 70

3.3 Tools and Development . 73

3.3.1 Missing Availability of Advanced Solutions 73

3.3.2 Degree of Maturity of (Tagging) Interfaces 76

3.4 Research Topics . 76

3.4.1 Desktop Metaphor as a Limiting Factor 77

3.4.2 Neglecting the Importance of Navigation 82

3.4.3 Local File Management Not Elaborate Enough 84

3.5 Research Methods . 87

3.5.1 Observation is Not Always Enough 88

3.5.2 Long-Term Versus Short-Term 89

3.5.3 Using Only Iterative Processes 90

3.6 Research Questions . 90

3.6.1 How Can Navigational Re-finding Be Improved? . . . 90

3.6.2 How to Organize Information In a Better Way? 92

3.6.3 How to Evaluate Such a Method? 92

4 The TagTrees Method 93
4.1 Motivation . 93

4.2 TagTrees . 94

4.3 TagTrees and File Management 96

4.4 TagTrees Addressing Previous Research 99

4.5 The Effort of the Storage Process 101

5 tagstore Implementation 107
5.1 Motivation . 108

vii

Contents

5.2 Software Modules . 110

5.3 tagstore Dialog . 112

5.3.1 Tag Recommendations 114

5.4 tagstore Manager . 115

5.4.1 My Tags . 116

5.4.2 Datestamps . 116

5.4.3 Expiry Date . 118

5.4.4 Re-Tagging . 120

5.4.5 Rename Tags . 120

5.4.6 Store Management . 121

5.4.7 Sync Settings . 122

5.5 Internal Storage Structure . 123

5.6 Workflows . 127

5.6.1 Installation . 128

5.6.2 Updating the Installation 131

5.6.3 Adding Items . 131

5.6.4 Retrieving Items . 132

5.6.5 Renaming Items . 133

5.6.6 Deleting Items . 133

5.6.7 Getting Help . 134

5.7 Best Practices . 134

5.8 Technical Limitations . 135

5.8.1 Resources . 135

5.8.2 Speed . 136

5.8.3 Workarounds and Solutions 138

5.8.4 No Adding, Deleting, or Renaming in TagTrees 139

5.9 Comparing tagstore to Other Solutions 139

6 Evaluation 141
6.1 Strategy . 142

6.2 Informal Feedback from Long-Term Users 143

6.3 Formal Experiment 1 . 145

6.3.1 Methodology . 145

6.3.2 Results . 161

6.3.3 Discussion . 171

6.4 Formal Experiment 2 . 172

6.4.1 Methodology . 173

viii

Contents

6.4.2 Results . 186

6.4.3 Discussion . 202

7 Summary and Outlook 205

Bibliography 213

Glossary 231

Index 241

List of Figures 245

List of Tables 249

ix

Abstract

This dissertation gives an overview of research related to Personal Infor-
mation Management (pim). After discussing some important challenges,
a new method for managing local files is described: TagTrees. Navigational
structures for re-finding are automatically generated in the file system after
he user has assigned tags to items (files or folders). These TagTrees provide
for associative navigation, because each item is reachable via a large set of
navigational paths, in the file system hierarchy.

The TagTrees method was implemented in a research software called tag-
store. This implementation provides multiple possible configurations, mak-
ing tagstore a research framework for analyzing many different kinds of
tagging processes.

Besides long-term usage patterns, two formal experiments were conducted
to evaluate tagstore. Comparative studies showed that tagstore performed
similarly to the traditional folder hierarchy method. Subjective user feed-
back and acceptance was very positive. Having a comparable performance
for filing, the additional possibilities for re-finding items combined with
very high user acceptance makes TagTrees and tagstore a valuable contri-
bution to pim research and end user software.

In the spirit of open science and the reproducibility of research results, the
tagstore framework, experimental materials, study results and evaluation
tools are all publicly available under an open license.

1

Life is very short, and there’s no time
For fussing and fighting, my friend
I have always thought that it’s a crime
So I will ask you once again
Try to see it my way
Only time will tell if I am right or I am wrong

We Can Work It Out
The Beatles

1 Introduction

For the last twenty thousand years, mankind learned to adapt the environ-
ment to its needs. We developed tools and ways to use nature’s resources
like fire or water for our own purposes. Beginning with early cave paint-
ing and storytelling, we began to record and distribute information. The
invention of writing reduced variation of content due to subjective inter-
pretation. It furthermore allowed propagation and archiving of information
independently of individual humans.

The concept of printing with woodblocks (before 220 ad) and movable
types (around 1040 ad) enabled mass production and mass distribution in
an enduring way. Having to manage a growing number of books, librari-
ans began to adapt their methods for organizing scrolls and manuscripts
to these new requirements. Following the idea of Aristotle, the world of
knowledge was structured in a hierarchy of categories, a taxonomy.

With the development of modern information technology, in 1969 Multics
contained a hierarchical file system comparable to the systems we are using
now (see Corbató and Vyssotsky, 1965). This file system was the first to
allowe directories with an arbitrary number of sub-directories with long
directory names, each holding files and further sub-directories.

Alan Kay developed the “desktop metaphor” for computers. It was in-
troduced in 1970 at Xerox parc for the Xerox Alto (Thacker et al. (1979),

3

1 Introduction

Figure 1.1: Xerox Alto. “Each Alto processor is made of medium- and small-scale TTL
integrated circuits, and is mounted in a rack beneath two 3-megabyte hard-
disk drives. Note that the video displays are taller than they are wide and are
similar to a page of paper, rather than standard television screen.”

[Source: http://www.digibarn.com/collections/software/alto/index.html – re-
trieved on 2012-07-21]

Figure 1.1). The Graphical User Interface (gui) took advantage of a user’s
knowledge of real world things to describe non-physical interaction fea-
tures and data. For example, physical folders were mapped onto the techni-
cal concept of directories in the file system. These ingenious ideas allowed
people to use computers, without knowing about the internals of a com-
puter at all. The directory metaphor made it possible to store information
in a similar way to the methods that were used to file physical paper files
and folders in drawers, stacks, and filing cabinets.

On the one hand, the introduction of the desktop metaphor was a very
clever way of allowing early computer users to apply knowledge and con-
cepts they already knew from the physical world. This enabled them to
use a complicated machine more easily. On the other hand, the desktop
metaphor also transferred one specific limitation of the physical world into
the virtual world: one thing has only one specific location in storage.

For decades, the number of information entities per user has been increas-
ing. Even worse, the number of information sources and storage locations
has increased as well. Cloud services offer a variety of web services to orga-
nize and re-find information entities of various kinds. Their user interfaces

4

http://www.digibarn.com/collections/software/alto/index.html

Figure 1.2: The Xerox Star 8010 graphical user interface in year 1981. The Xerox Star (John-
son et al., 1989) was a direct successor of the Xerox Alto (Thacker et al., 1979).
The desktop metaphor is already in an advanced state. There is a window with
a title, window manipulation buttons and scroll bars. The icons on the desktop
represent documents, folders, network drives, email boxes and printers.

[Source: http://www.digibarn.com/collections/screenshots/xerox-star-8010/

index.html – retrieved on 2012-07-21]

are constantly being optimized to handle the increasing amount of data.
However, there is still a huge amount of information on local hard drives,
organized in the traditional way: filing in a folder hierarchy. Organizing up
to a few hundred files within a hierarchy of folders does not seem to be a
problem. Having hundreds of thousands of files within the same hierarchy
is a problem.

Users often prefer special-purpose software to manage files of different
formats. They use music management products to manage music files with
metadata related to music. This way, they are able to derive different kinds
of views according to album, artist, year of publication, song duration, and

5

http://www.digibarn.com/collections/screenshots/xerox-star-8010/index.html
http://www.digibarn.com/collections/screenshots/xerox-star-8010/index.html

1 Introduction

so forth. Users install digital photo management software to handle their
digital photo library, so that they are able to derive different kinds of views
according to events, people in the photographs, topics, colors and so forth.
These special-purpose information management products demonstrate the
limited capabilities of our main information management software layer:
the file system.

Since the seventies, many workarounds were developed to allow more flex-
ible structures: for example hard links, symbolic links, and shortcuts. Dis-
regarding the fact that users seldom use such file system features, they do
not even provide an effective solution to the underlying problem: broken
links, multiple copies of the same file, and frustrated users are the result.
Users have adapted to the limitations of a strict hierarchy of folders. They
keep implicit cognitive models of “their system” in their minds. When a
file relates to multiple different destination folders, those cognitive models
decide (mostly unconsciously) which folder “wins”. There are many prob-
lems related to this. Not only that these cognitive models change over time
for a single user, the problem becomes even worse when multiple users
work with a shared hierarchy of folders. Nevertheless, people have been
basically using the very same unsatisfactory method to manage more and
more files (and folders) for the last sixty years without any fundamental
improvement.

Personal Information Management (pim) research over the last decades de-
veloped a number of methods, prototypes and products. Chapter 2 de-
scribes relevant research work and prototype interfaces.

This thesis focuses on navigation within a file system, excluding search
methods. Although desktop search engines are a useful alternative retrieval
method for many users, several studies have shown that the majority of
users prefer navigation over search for access to local files and folders.
Chapter 3 discusses some challenges related to pim and motivates the basic
principles described in this thesis. Several areas where pim research has
great potential I described.

In Chapter 4, a new method for organizing and navigating to local files for
a single user is introduced: instead of filing files or folders into a hierarchy
of folders, the user tags them. The system uses these tags to automatically
derive a navigational hierarchy, called TagTrees. The structure of TagTrees is

6

designed to allow associative navigation in contrast to having to remember
storage locations. A user has many different possible navigational paths to
the same information entity.

The TagTrees method was implemented in research software called tagstore
whose technical details and features are described in detail in Chapter 5.
Best practices and technical limitations of the current implementation are
elaborated on as well.

Long-term user tests and two formal experiments were conducted to eval-
uate the tagstore implementation. Chapter 6 describes the research insight
which was gained while comparing tagstore to the common folder filing
method. Objective performance measures showed a mixed picture, but sub-
jective participant feedback clearly favored tagstore.

Chapter 7 summarizes this thesis and presents some ideas for possible
future work and development.

7

The word is about, there’s something evolving,
Whatever may come, the world keeps revolving
They say the next big thing is here,
That the revolution’s near,
But to me it seems quite clear
That it’s all just a little bit of history repeating

History Repeating
Propellerheads (Feat. Miss Shirley Bassey)

2 Research Background

Research contributions in the field of pim are most often accomplished by
confronting test persons with a tool, method, or questions or by observ-
ing test persons. Figure 2.1 gives a short overview of the influence vectors
and the possibilities of gaining objective or subjective feedback. The things
that are changed during an experiment are called independent variables and
the measures which we observed or derived are called dependent variables
(McGrath, 1995). Early research contributions, especially, consisted mostly
of subjective feedback only, lacking any prototype or tool and objective
performance measures.

This chapter consists of two sections: the first summarizes a small subjec-
tive selection of relevant studies 1 and articles which did not introduce a
new tool which was tested. These papers are described in greater detail.
The second section summarizes many tool-oriented approaches which in-
fluenced the research field within the last decades. Boardman and Sasse
(2004) used the terms empirical studies and prototype design. The studies
which propose and evaluate a new prototype, however, also include em-
pirical data which was collected. In this thesis, these two categories are
called pim strategies and pim tools.

1. In W. P. Jones and Teevan (2007) there is an exhaustive summary of many projects up
to 2007.

9

2 Research Background

Test Persons

new software/tool

tasks

questionnaires

observations (only)

(performance) evaluation

︸ ︷︷ ︸ ︸ ︷︷ ︸
dependent variables

(subjective/objective feedback)
independent variables

(influence vectors)

Figure 2.1: Research contributions can have or make use of influence on test persons. For
subjective or objective feedback results, questionnaires, passive observations,
or (performance) evaluations are being used.

2.1 PIM Strategies

This section summarizes research work focused on the status quo of user
strategies without introducing new methods or tools.

2.1.1 As We May Think

The famous article “As We May Think” (Bush, 1945) was a milestone in the
history of modern information management. Vannevar Bush summarized
the status quo and proposes new goals for the world of science after the end
of World War II. He took a look at the history of technology and described
specific problems of famous scientists which limited them. At the time,
they did not have fabrication standards and appropriate tools for building
inventions. He stated that “[m]achines with interchangeable parts can now
be constructed with great economy of effort”. Bush proposed a research
focus shift from problems related to the physical world towards a new
direction.

10

2.1 PIM Strategies

In his opinion information storage, processing and retrieval represented
very important challenges. He then described many state of the art tech-
niques of the time and extrapolated them. His descriptions could be inter-
preted to understand that he anticipated things like digital cameras, fax
machines, the advantages of digital copies, text-to-speech conversion sys-
tems, optical character recognition, the availability of general-purpose com-
puters for everybody, modern programming languages, relational databases,
non-cash payment methods, magnetic information storage systems, brain-
computer interfaces, the digitization of information of any kind, and so
forth.

The most revolutionary thing he mentioned, by far, was an apparatus he
named “memex” (probably for “memory expander”). It was “a future de-
vice for individual use, which is a sort of mechanized private file and li-
brary [. . .] in which an individual stores all his books, records and com-
munications”.

The physical appearance of a memex was described as a desk which “can
presumably be operated from a distance”. One could operate this device
using a keyboard, buttons and levers. Material was stored on microfilm.
The storage capacity was so large that “it would take [the user] hundreds of
years to fill the repository, so he can be profligate and enter material freely”.
Content could be purchased from third parties and easily inserted into a
memex. Bush clearly described the process of copy and paste, skimming
and navigating large documents and annotating content.

As the “essential feature of the memex”, he emphasized the possibility of
being able to create links: “the process of tying two items together is the
important thing”. This way, memex is one of the first concepts describ-
ing hyperlinks. Bush also described how joined items form a trail, where
items “from widely separated sources [are] bound together to form a new
book”.

This vision of Vannevar Bush was quite remarkable, considering the time
when it was written. Bush described visions of techniques and tools of an
information worker and not of an average clerk or scientist of that time.
This single article inspired many scientists in the following decades. Not
all of his dreams became products yet. One important idea which is also a
very crucial point for this thesis, Bush described that way:

11

2 Research Background

} Our ineptitude in getting at the record is largely caused by
the artificiality of systems of indexing. When data of any sort
are placed in storage, they are filed alphabetically or numeri-
cally, and information is found (when it is) by tracing it down
from subclass to subclass. It can be in only one place, unless dupli-
cates are used; one has to have rules as to which path will locate
it, and the rules are cumbersome. Having found one item, more-
over, one has to emerge from the system and re-enter on a new
path.
The human mind does not work that way. It operates by association.
With one item in its grasp, it snaps instantly to the next that
is suggested by the association of thoughts, in accordance with
some intricate web of trails carried by the cells of the brain. It
has other characteristics, of course; trails that are not frequently
followed are prone to fade, items are not fully permanent, mem-
ory is transitory. Yet the speed of action, the intricacy of trails,
the detail of mental pictures, is awe-inspiring beyond all else in
nature. [Emphasis by Karl Voit].

2.1.2 How People Organize Their Desk

In 1981, Malone (1983) interviewed ten persons who gave a “tour of their
office”. He asked a set of standard questions to find out how people or-
ganize their physical desk and office in general. This exploratory study
revealed that people can be classified into those having a “neat office” and
those having a “messy office”. People having neat offices tended to work
using routine workflows. They were filing documents into a well-defined
organization scheme, which often reflected these (externally-defined) pa-
per workflows. Interviewees having a messy office often relied on piles
of mixed content. The two most important units of desk organization were
files and piles. Malone emphasized that “in addition to this finding function,
an equally important function of most desk organizations is reminding”. He
found evidence that there were cognitive difficulties in classifying informa-
tion.

12

2.1 PIM Strategies

Most interesting were the implications Malone derived for (future) “com-
puter-based information environments”. Computer systems should sup-
port the mechanical process of creating multi-leveled classifications and
labels. Users should be able to defer classification, without the need for
having an explicit title. Another important feature was the notion of “ac-
cessing information on the basis of its spatial location instead of its logical
classification”. Automatic classification was a way to simplify classification.
Explicit and implicit information should be used to support this automatic
process. The temporal view was an important aspect of how information
was accessed by users. Retrieval should be supported by more than one
dimension at a time. In relation to the reminding function, he stated that
“systems should make it easy for their users to store certain information so
that it will automatically appear, without being requested”. When a user
explicitly defines priorities, the system should make use of the following
indications: (a) the frequency of being displayed, (b) the size of its graph-
ical representation, (c) the more or less prominent location of its represen-
tation, and (d) the color of its representation. Malone also suggests “that
computer-based systems can automatically change priorities over time”.
According to its “semiintelligent reminding system”, the computer should
be able to change priorities.

2.1.3 The Psychology of PIM

Another great insight into the topic of pim was given by Lansdale (1988).
This paper summarized the psychological aspects of recall, recognition and
categorization. Due to its direct relevance to this thesis and the fact that this
paper discussed many issues that modern computer interfaces still do not
address, the description of its content will be in greater detail.

Lansdale initially stated that “the purpose of IT should be to increase the
quality, not merely the quantity, of available information”. He mentioned
“two general points [. . .] which represent important issues in the develop-
ment of information management tools on computers”:

} First is that there is a general problem in categorising items,
both in terms of deciding which categorisations to use, and in

13

2 Research Background

remembering later exactly what label was assigned to that cat-
egorisation. The second is that we remember far more about
documents than can be used in retrieval procedures. Clearly, if
the first of these could be ameliorated, and the second exploited,
powerful tools will emerge.

He further refers to the study done by Malone:

} Let us consider the use of piles identified in Malone’s study.
No one would suggest the introduction of unstructured “piles”
of documents in a computer environment. (I say this with the
thought that somewhere someone probably has, much in the
way that someone thought of building planes that flapped their
wings.) Apart from anything else, they are evidently counter-
productive. How, then, do we decide which aspects of office behaviour
to emulate in office automation and which to avoid?

The problem is that the strategies used by people in one technol-
ogy need not apply to another.

[. . .]
The point is subtle but critical to a psychological analysis of

information management. The piles that Malone reports are not,
in a simple sense, representative of a need in the user. Quite the re-
verse, in fact. They are a compensating strategy for the problems
of classification. In using piles, the worker is making a trade-off
along several dimensions of difficulty. [Emphasis by Karl Voit].

This introduced a remarkable notion to pim: how can researchers decide
which user behavior is expressing a need and which behavior is simply a
workaround for an inappropriate tool environment?

} [T]he underlying psychology of information management can-
not be directly inferred from users’ behaviour in offices, because
that behaviour is largely adapted to overcoming the problems
being created by the mismatch between the facilities provided,
the users’ need, and their cognitive capacities.

14

2.1 PIM Strategies

Lansdale criticized the unreflected emulation of concepts from the real
world in their virtual counterparts. He questioned fundamental assump-
tions of the desktop metaphor:

} For the moment, I will leave the reader with the thought that
concepts such as in-trays and filing cabinets, artefacts of a paper-
based technology, may transfer sensibly to a computer-based
system, because they have a genuine function and fulfil a cog-
nitive need. On the other hand they may be the trappings of a
constrained and outmoded technology which have no relevance
in computer-based systems.

In another part of the paper, Lansdale mentioned:

} It is important to recognise that the design philosophy of
these machines [based on the desktop metaphor] is not prin-
cipally to support information management, but to make the
machines easy to use.

[. . .]
However, in areas of information management which involve

longer term storage and retrieval, their facilities do not provide
added value. When it comes to filing, these systems resort to
rather traditional methods: the files need a name, they can be
placed in a folder, and in a particular “filing cabinet” or on a
particular disc. Ultimately, to retrieve this information, we are
back to remembering filenames and the categorisations we used
to file the information. The added visual aspects of the interface
do not provide any help here: icons of a particular type (such as
documents) all have exactly the same appearance. The only way
they are differentiated is by a filename underneath them.

The paper further concentrated on the problems of classification and the
role of memory. Since the 1980s, many information interfaces were devel-
oped, where the software designer selected a particular category for each
menu entry. But “[u]sers were making too many mistakes by way of se-
lecting the wrong category on the menus”. Lansdale further concluded
that “information does not fall happily into neat categorisation structures”.

15

2 Research Background

Furthermore, “information in the real world falls into several overlapping
and fuzzy categories, which means that any categorisation of an item of
information can only be relevant to certain aspects of it, even if it can be
used accurately”.

One of the most important conclusions from Lansdale (1988) was that

} The process of information retrieval in the human mind is
fundamentally different from filing or library systems in which
items are accessed by location rather than by their meaning.

This questions the desktop metaphor in its fundamental roots. Even though
this metaphor is helpful during the learning process of a computer in-
terface, its role in making this computer interface an efficient tool is dis-
putable. Lansdale emphasized this notion with a general statement regard-
ing transferring results from one technology to another:

} Consequently, if the technology were to change, and with it
the constraints, then the match between the psychological pro-
cesses and the technology would result in different trade-offs.
Consequently, strategies would change also, and what constituted
a reasonable strategy in one technology need not in another.

A similar argument applies to the interpretation of psycho-
logical experiments. Just because particular experiments on the
memory for pictures appears to produce high levels of recall, it
does not follow that tasks involving pictorial memory will al-
ways do so. It could be that the particular circumstances of the
experiment allowed for successful strategies which may not be
applicable elsewhere. [Emphasis by Karl Voit].

Many guis use visio-spacial methods in order to make use of the location-
based memory capabilities of computer users. Lansdale came to the con-
clusion that “the subjects do not perform better with visio-spatial informa-
tion”:

} [A]ssertions made about the inherent value of visio-spatial in-
formation represent a simplistic view of human cognition and
no guarantee of good design. [. . .] [I]t is important to emphasise

16

2.1 PIM Strategies

that this does not mean that visio-spatial information should be
dismissed in considering future information systems. [. . .] What
is being dismissed is that visio-spatial methods are automati-
cally a panacea for human-computer interaction.

Regarding the large set of studies that showed a remarkable recall using
visio-spacial methods, Lansdale explained that “the success of recall is
more probably related to the particular circumstances under which they
are being asked to perform than resorting to concepts of supernormal psy-
chological powers”.

The paper tried to give some answers regarding the question of how filing
should look like. However, Lansdale found out that there are trade-offs to
be made:

} This leaves us with an important dilemma. The more we ask
the user to do at the process of information storage, the less
likely he is to do it, creating retrieval problems. On the other
hand, the more we automate the process of storage and take
responsibility away from the user, the less he is going to re-
member, and therefore the less he is going to be able to retrieve.

2.1.4 Cross-Tool Behavior and Longitudinal Data

In Boardman and Sasse (2004) the authors “collected cross-tool data relat-
ing to file, email and web bookmark usage for each participant, and [. . .]
[they] collected longitudinal data for a subset of the participants”. Owing
to its high production effort, longitudinal data is seldom part of pim study
results. However, this longitudinal data shows very important insights into
how people respond to different situations over time. Additionally, pim

studies usually concentrate on a single method or tool ignoring differences
and side-effects resulting from other methods or tools.

The study was conducted in two separate phases. In the first phase, “semi-
structured interviews with 31 users centered on guided tours of their file,
email and bookmark collections on their main work computer” were car-
ried out:

17

2 Research Background

} We performed content analysis on the interview data to ex-
tract themes relating to strategies, problems and needs. Screen-
shots were also captured of the desktop, and the folders in each
collection. We analyzed the folder structures to investigate: (1)
the concepts used to name folders (e.g. project, contact, place),
and (2) the level of folder overlap (folders common to multiple
collections). Finally, we compared each participant’s strategies
between the three collections to investigate the consistency of
their behaviour [. . .].

In phase two, eight participants from phase one were tracked to get insight
on “the evolution of the three collections and the strategies used to manage
them”. The average participation duration was 286 days. Additionally the
participants were asked to try a new tool called WorkspaceMirror. Due to the
relatively low impact of WorkspaceMirror, its implications will not be men-
tioned here. WorkspaceMirror itself will be described in Section 2.2.8.

One finding of phase one – that is confirmed in many other studies as
well – was that the following:

} Participants were highly motivated to talk about pim – it was
an area that was important to them, and a source of problems
and frustration.

So it seems that there is a readiness to talk about problems of pim among
users. My own anecdotal evidence also reconfirms this inherent desire of
users to talk about pim issues.

Related to the topic of this thesis, another result is quite interesting. People
seem to have a much greater personal relation to their file collection than
to their emails or bookmarks. This is also reflected by the likelihood of
information re-use:

} Our qualitative data suggests that users are more likely to re-
use files than emails or bookmarks, particularly over the long-
term. Users perceive that file organization is more worthwhile

18

2.1 PIM Strategies

since the cost of filing is offset by predicted benefits at retrieval
time.

Boardman and Sasse tried to categorize participant behavior. The classic
patterns of filers and pilers (Malone (1983), physical desktop) or others 2

were insufficient to explain participants behavior. The majority of people
employed a mix of different strategies. Boardman and Sasse wrote that
these classic strategy classifications “exaggerate the extremes” and do not
reflect the more complex mix of strategies users develop: “Our cross-tool
data indicates that pim strategies also vary significantly between tools for
many individuals.”

Barreau and Nardi (1995) did not try to classify user behavior. Instead,
they derived a classification scheme with regard to the information which
is processed: ephemeral, working, and archived.

However, Boardman and Sasse proposed two alternative sets of terms:

1. “Information usefulness: active (including ephemeral and working),
dormant (inactive, potentially useful), not useful, and un-assessed (e.g.
new emails).”

2. “Information ownership: mine (including self-created files, and items
that have been assessed as having value, e.g. filed email), and not-mine
(e.g. much of the email inbox, and information on the internet).”

The overlap in terms of similarly-named folders between file systems and
email was significant. The overlap between files and bookmarks or emails
and bookmarks was much lower.

Boardman and Sasse also reported “a strong preference for browsing over
search in all three tools”. This was confirmed in many other studies as well
and will be discussed in Section 3.4.2 in more detail.

The authors also developed a system to profile cross-tool behavior of their
test users. The importance of files is also reflected in these results as shown
in Table 2.1.

2. Frequent filer, spring cleaner and nofiler (Whittaker and Sidner (1996), Emails); no-filers
consists of folderless cleaner or folderless springcleaner (Bälter (1997), Emails); no-filer,
creation-time filer, end-of-session filer, and sporadic filer (Abrams, Baecker, and Chignell
(1998), bookmarks)

19

2 Research Background

Cross-tool profile # Users % Users
pro-organizing in all 3 tools 8 26 %
pro-organizing in files & email only 14 45 %
pro-organizing in files only 7 23 %
organizing-neutral in all tools 2 6 %

Table 2.1: Cross-tool profiles. [Source: Boardman and Sasse (2004)]

The study had effects on some of the participants’ strategies: two persons
(out of the eight) changed their pim strategies during phase two of the
study. The authors mentioned a “perceived social pressure” to be organized
which might be the reason to change strategies.

}Although the observed changes were subtle, participants found
them beneficial. However, the supporting nature of pim means
that users rarely devote time to planning and executing changes
in strategy. Users may benefit from increased reflection with re-
spect to pim, so as to receive the same benefits that resulted from
the “self-auditing” effect of the study.

Boardman and Sasse (2004) contained a quite remarkable statement related
to the usage of folder hierarchies:

} The folder hierarchy is often criticized for not being easily
adaptable to fast-changing user needs, and requirements for
dynamic views of personal information are often emphasized
in PIM design [. . .]. Our findings suggest a contrasting per-
spective: the slow-changing nature of the hierarchy may benefit
users by promoting familiarity with the personal information
environment. Such familiarity in turn supports location-based
finding for which users expressed a clear preference. We thus
highlight persistence as an often overlooked, yet desirable de-
sign goal.

20

2.2 PIM Tools

Figure 2.2: “TX-2 Operating Area – Sketchpad in use. On the display can be seen part of
a bridge [. . .]. The Author is holding the Light pen. The push buttons used to
control specific drawing functions are on the box in front of the Author. Part
of the bank of toggle switches can be seen behind the Author. The size and
position of the part of the total picture seen on the display is obtained through
the four black knobs just above the table.” [Source: Sutherland (1963b)]

2.2 PIM Tools

In contrast to the last section, the research work listed in this section relates
to new methods and research prototypes which were evaluated. Starting
with two very early milestones, Personal Information Management (pim)
tools developed over time with very different approaches.

2.2.1 Sketchpad

In 1963, Ivan Sutherland (Sutherland, 1963a; Sutherland, 1963b) designed
and implemented ground-breaking drawing software on a Lincoln TX-2
computer at mit. Its interface (Figure 2.2) was the first direct manipulation
computer interface and resembled an ancestor of modern cad tools. Instead
of using punchcards or typed text as user input, Sketchpad used a light pen
which was held by the operator like an ordinary pen.

21

2 Research Background

Figure 2.3: Douglas Engelbart during his demonstration of nls. The variable split screen
view allowed the audience to see the performer and the screen content. In this
sequence, Douglas Engelbart showed a graphical representation of a travel plan
which was enriched with hyperlinks on each node. For example, a hierarchical
shopping list, or books at the library. [Video Screenshot]

Besides its direct influence on gui-design, Sketchpad introduced the con-
cepts of object-oriented programming, templates, drawing libraries, copy
and paste, constraint satisfaction and many more.

2.2.2 NLS

A mind-blowing demonstration was conducted by Douglas Engelbart in
1969, presenting his nls described in Engelbart and English (1968). This
demonstration used an enhanced video projection system, showing images
from various cameras in San Francisco and Menlo Park and crt screen
content from multiple nls terminals as shown in Figure 2.3. Multiple re-
searchers were connected with audio headsets. This video-conference sys-
tem was used to present nls running remotely on computers connected
through telephone lines.

The nls system itself introduced the computer mouse for interactive point-
ing and selecting objects on the screen. Hypertext links within text files and

22

2.2 PIM Tools

graphical drawings could be used to generate a heavily interlinked docu-
mentation system. It included a word processing system, which was used
to generate the paper of Engelbart and English (1968). Data could be re-
trieved by navigating the link structure or by using dynamic search queries
with weighted result sets. In its core, nls was a collaborative multi-user
system. Several people were able to collaborate within files and send mes-
sages to each other. All actions were logged and enriched with metadata.

This presentation made such a huge impression that people now refer to it
as “the mother of all demos”. 3

2.2.3 Lifestreams

In the mid-1990s, Eric Freeman and David Gelernter described Lifestreams
(Freeman and Fertig, 1995; Freeman and Gelernter, 1996; Freeman, 1997),
a client-server software which organized “a user’s personal workspace”
using “a time-oriented stream of documents”. Its premises – as described
in Freeman and Gelernter (1996) – were:

1. Storage should be transparent. “Naming” a file and choosing a loca-
tion for it as it is created is unnecessary overhead.

2. Directories are inadequate as an organizing device.
3. Archiving should be automatic.
4. The system should provide sophisticated logic for summarizing or

compressing (and where appropriate, for picturing or animating) a
large group of related documents of which the user wants a concise
overview.

5. Computers should make “reminding” convenient.
6. Personal data should be accessible anywhere and compatibility should

be automatic.

Lifestreams visualized all documents a user created and all documents
which were sent to the user in a stream, as shown in Figure 2.4. The user
was able to create new documents by using the new and clone functions. The
latter “takes an existing document, creates a duplicate and adds it to [the]

3. https://www.youtube.com/watch?v=yJDv-zdhzMY – retrieved on 2013-02-16.

23

https://www.youtube.com/watch?v=yJDv-zdhzMY

2 Research Background

Figure 2.4: Lifestreams interface, UNIX Viewport. [Source: Freeman and Fertig (1995)]

stream”. Further on, “[d]ocuments can also be created indirectly through
transfers, which copy a document between streams”.

For re-finding documents, Lifestreams offered a find operation. The result
sets of such queries were shown as sub-streams and behaved like virtual
folders: changes to the result of the query were visible instantly.

The summarize operation generated an overview document from a given
sub-stream. This supported visualizing stock prices and so forth. To change
a document from a writable state to a read-only state, the freeze operation
could be used. Using an xfer operation, a user was able to send documents
to other users using email.

A template module provided an easy-to-use method for making phone call
notes, storing business card information, or logging times while working
on a task. External data sources were added using web bookmark items,
which could also be shared and transferred among multiple users.

24

2.2 PIM Tools

Lifestreams was evaluated in Freeman (1997) using the Questionnaire for
User Interaction Satisfaction (quis), prototype instrumentation, and a user
response survey. Six users participated in the evaluation. Freeman found
that subjective user acceptance was very high and that Lifestreams had a
short learning curve. The features of Lifestreams offered a clear benefit for
the test users. Unfortunately, Lifestreams is not available for download or
evaluation.

2.2.4 TimeScape

A similar approach for visualizing documents in a time-oriented view was
described in Rekimoto (1999). A research prototype called TimeScape re-
sembled a time machine (similar to the “Time Machine” feature of the cur-
rent os x). Users were able to put icons on the desktop and arrange them
arbitrarily. All user activities were logged to restore desktop states from the
past. This way, users were able to delete documents from the desktop and
reach back to them using the time machine. The duration of an object was
defined from its first appearance on the desktop until its delete time-stamp
from the desktop. When a user went to the future, she was able to put
sticky notes on the desktop which acted as a reminder. When the future
time was reached, this sticky note appeared on the desktop. TimeScape of-
fered zoom-in and zoom-out on a time-line scale, which successively faded
away objects that had shorter durations.

The concept was completed with a modification of the Samba file system
called “TmSamba” and a protocol to communicate between applications
called “time-casting”. The authors proposed that every application should
be able to change its state according to the time selected by TimeScape.

To my knowledge, TimeScape and its companion tools were never released
and never evaluated outside the development team.

25

2 Research Background

Figure 2.5: A screenshot of the TimeScape desktop.

2.2.5 Remembrance Agent

The Remembrance Agent (as described in Rhodes and Starner (1996); Rhodes
and Maes (2000); Rhodes (2000); Rhodes (2003)) is a mode in the Emacs ed-
itor. The editor interface becomes split, so that the current working buffer
is shown on top, whereas the narrow Remembrance Agent buffer is shown
on the bottom of the window (Figure 2.6). By default, the Remembrance
Agent buffer contains four lines filled with suggested links to relevant doc-
uments such as emails, files or paper abstracts. It is updated every few
seconds and relates to the content of the main working buffer above.

The user has several interaction possibilities: get the list of keywords that
lead to the suggested link, retrieve the full text of the suggested infor-
mation, use Remembrance Agent as a normal search engine, switch the
databases to be queried, and associate specific sets of databases to a certain
file type.

The evaluation described in Rhodes and Maes (2000) was a controlled task
evaluation. Twenty-seven persons were divided into a control group and an
experimental group. All users were asked to write a newspaper-style article
about a subject. The control group had to use a normal Emacs editor and

26

2.2 PIM Tools

Figure 2.6: A screenshot of Emacs showing the Remembrance Agent giving context-
related links to relevant information. In the upper section, Emacs is show-
ing the current working buffer. In the four lines of the lower section, the Re-
membrance Agent shows links to related resources. [Source: Rhodes and Maes
(2000)]

a web browser 4 to search within an archive of news articles. The users in
the experimental group were given a version of Emacs enhanced with the
Remembrance Agent, whose index was fed by the newspaper database. In
addition, the experimental group was able to use the web search as well.

Results showed that a large majority of the users preferred the Remem-
brance Agent over web search “in terms of ranking, overall usefulness,
and whether they would want the tool for a similar task”. And “subjects
from the experimental group viewed around three times as many different
Tech articles as did those in the control group, and within the experimental
group subjects viewed around two-and-a-half times as many articles using
the [Remembrance Agent] as they did using the search engine”.

The produced essays were examined as well: “Articles were blinded and

4. To be precise, the web browser was enhanced with another research tool called Margin
Notes which automatically annotates web pages. Besides the fact that Margin Notes
performed poorly, its influence was minimal and is left out in the further description
here.

27

2 Research Background

coded for number of facts mentioned, number of references to [the article
database], and overall quality. However, individual variance was high, and
no statistically significant difference was found between the two groups.”

In short, users found Remembrance Agent to be a useful tool, which sup-
ported their task by giving them links they regarded useful.

Remembrance Agent was released under the gpl and its source code is re-
leased on a web page 5. Version number 2.12 was published on February 16

2004 for Emacs-20 and XEmacs-20 and is meanwhile considered unsup-
ported and outdated.

2.2.6 Presto

The research software Presto was developed (Dourish et al., 1999a; Dour-
ish et al., 1999b; Dourish, Edwards, Lamarca, et al., 2000; Dourish, 2003)
within the Placeless Documents project. Presto targeted the document as
the most important entity, where properties 6 played a central role in the
design. Those properties were associated directly to the documents and
moving a file did not break these relations. Files were organized without
any hierarchical structure. Instead, collections could be used to group doc-
uments.

Collections held documents which met collection-properties the user spec-
ified. The latter ones were comparable to Smart Folders used in Mac os x

Finder. Additionally, the user was able to include arbitrary documents in a
collection that did not meet the properties for the search query (inclusion
list). Similarly, the user was able to manually remove documents from a
collection (exclusion list).

Many implicit properties were collected using so-called “services”. For ex-
ample, an email service extracted sender, subject, date and so on from email
headers. Legacy applications could access documents using a mounted nfs

share.

5. http://www.remem.org/ – retrieved on 2012-07-14.
6. Properties in Presto were key/value pairs such as “author=dourish” or “status=draft”.

28

http://www.remem.org/

2.2 PIM Tools

Figure 2.7: “A snapshot of Vista, a Presto interface. Vista offers multiple Rooms-like
workspaces onto the same document database, and displays documents (A),
collections (B) and properties (C). Closed collections are shown as piles (D),
giving cues as to their current size. Note that the nature of the system implies
that a document may actually appear in multiple places at once (E).” [Source:
Dourish et al. (1999b)]

For visual access to Presto, a workspace browser named Vista was devel-
oped. Its gui (Figure 2.7) used mouse operations to interact with the user.

To my knowledge, Presto was never evaluated in studies or released to the
public.

2.2.7 Haystack

The Haystack project (Huynh, Karger, and Quan, 2002; Huynh, Karger,
Quan, and Sinha, 2003; Bakshi and Karger, 2005; Sinha and Karger, 2005)

29

2 Research Background

at mit implemented a concept that was to some extent similar to the Presto
project. Unlike Presto, Haystack did not see a file as the sole information
object. Using technologies like Resource Description Framework (rdf) from
the semantic web, it provided methods to create links between objects and
annotate them. Objects were derived from files automatically or could be
added manually.

A series of components was developed in the Haystack project. As de-
scribed in Sinha and Karger (2005), a task workspace was presented, allow-
ing an information worker to set up her environment:

} We define a task workspace as a collection of information rel-
evant to the task at hand that can be selected, presented and
operated upon based on the user and task constraints, and that
the user can aggregate in a lightweight manner. Our approach
combines three elements:

• A workspace designer that lets users lay out the sets of infor-
mation objects they want to work with in their application,
specify which view to use to present each type of object
and stipulate the relevant operations that should be read-
ily available;
• A view designer that lets users specify how each type of

information object in their workspace should be shown –
what properties of those objects they want to see, how users
should interact with them, and how they should be laid
out; and
• A channel manager that lets users specify queries that dy-

namically maintain collections of related information that
can be used to specify the relevant sets of information for
one or more task workspaces.

With those components, users were “able to define and modify the con-
tent, presentation and manipulation capabilities of their task workspaces”
as shown in Figure 2.8. These views were data themselves and could be
named, re-visited, re-used and linked. This way, a user was able to share
views and quickly switch from one workspace to another according to the
current task.

30

2.2 PIM Tools

Figure 2.8: Haystack: paper-writing workspace in usage mode. The user was able to define
the layout of the information object sources, the type of information objects
shown, and to define the queries for information objects shown. [Source: Bakshi
and Karger (2005)]

In contrast to wide-spread relational database user interfaces, “Haystack
aims to feel less like a database, and more like an application” as W. P.
Jones and Teevan (2007, p. 149) stated.

The source code of the Haystack project is released 7 under a BSD license.
At the time of writing, however, the Subversion (svn) repository was bro-
ken. 8

7. http://simile.mit.edu/hayloft/ – retrieved on 2013-02-16.
8. Error message “No such revision 6206” on the web interface and when trying to check

out the svn source as well.

31

http://simile.mit.edu/hayloft/

2 Research Background

2.2.8 WorkspaceMirror

Boardman and Sasse (2001) and Boardman (2001) described an overlap in
folder-names when analyzing file system folders, email folders, and web
bookmark hierarchies. The most noticeable amount of overlap was found
between file system folders and email folders.

Boardman supposed that a tool which automatically synchronizes the or-
ganization of folders between file system, email, and bookmark could im-
prove pim: users would have a supporting tool for consistency and worry
less about re-creating similar structures in different tools. WorkspaceMirror
(Boardman, Sasse, and Spence, 2002) was developed which was described
as such:

} Our current prototype is an extension to MS Windows and
synchronizes three folder hierarchies: (1) email folders stored
in MS Outlook, (2) “My Documents”, used to store personal
files, and (3) web bookmarks folders under “Favorites”. The
tool works in one of two modes: automatic or prompted. In
prompted mode the creation, deletion or renaming of any folder
causes a dialog box to be displayed asking the user if they want
to replicate the operation in the other two tools.

A preliminary evaluation with four of their colleagues showed promising
effects with three of them welcoming WorkspaceMirror and one preferring
different hierarchies.

In Boardman and Sasse (2004) (which was covered in detail in Section 2.1.4)
a long-term study revealed that only four participants used WorkspaceMir-
ror over a longer period of time (average: 107 days). The other four partici-
pants could not find enough advantages to use it long-term. In general, the
participants did not see WorkspaceMirror to be of notable help:

} Three “non-changers” used WorkspaceMirror, mirroring 14

new folders on average, mostly between files and email. We had
anticipated that WorkspaceMirror would stimulate pro-organiz-
ing strategy changes by allowing users to leverage filing invest-
ment in one collection across to other collections. However, these

32

2.2 PIM Tools

participants instead employed WorkspaceMirror in support of
their existing filing strategies. Against our expectations, the two
participants who made the most significant strategy changes did
not consider WorkspaceMirror to be a major contributory factor.

Although WorkspaceMirror was a very interesting cross-tool approach, it
seems to be the case that the overlap in structure is only a minor one. Users
seemed to prefer different kinds of structures in different tools. Boardman
and Sasse (2004) summarized:

} Our observation of folder overlap points to a subset of user
activities that involve the management of multiple types of in-
formation. Most overlapping folders corresponded to roles and
projects, suggesting that these concepts may be usefully shared
between collections [. . .]. However, it should be emphasized that
most folders did not overlap. This suggests that: (1) some pro-
duction tasks are supported by single pim tools and may not
necessarily benefit from increased integration; and (2) users may
have different organizational needs in different tools. In addi-
tion our data indicates that email contains more contact-based
folders, whilst bookmark folders are mainly interest-based. This
variety suggests users may be constrained by integration de-
signs that are based on specific types of concept [. . .].

To my knowledge, WorkspaceMirror was never released to the public.

2.2.9 Stuff I’ve Seen

Another excellent research contribution which combined a proposal of a
tool with a long-term study was Dumais et al. (2003). The authors devel-
oped a new client desktop search engine interface called Stuff I’ve Seen
(Stuff I’ve Seen (sis)). Built on top of Microsoft Search indexing 9, sis sorted
results by last time modified or an Okapi-based ranking algorithm. It al-
lowed facet-based refinement through filters and showed document title,
date, rank, author, and so forth. For emails, the recipient was determined as

9. http://en.wikipedia.org/wiki/Windows_search – retrieved on 2012-07-28.

33

http://en.wikipedia.org/wiki/Windows_search

2 Research Background

Figure 2.9: The sis interface, with the Top View. On top is the query input box. Underneath
are the filters. At the bottom the matching results are shown. [Source: Dumais
et al. (2003)]

well. Additional fields (File Type, Mail CC, Mail HasAttachment, Message
Type, Message Read, Path, Size) were available through an option menu.
For images and PowerPoint slides, a thumbnail preview was shown. For
documents containing text, the first 300 characters were visible. This way,
the authors achieved a set of rich contextual cues.

The gui of sis had two different visualization layouts: the Top View as
shown in Figure 2.9 and the Side View as shown in Figure 2.10. The Top
View was considered more flexible in terms of expressing a wider range of
filter criteria. The Side View “[had] the advantage that it [was] somewhat
easier to understand and [was] less cluttered”.

34

2.2 PIM Tools

Dumais et al. evaluated sis with 234 participants over a period of six weeks.
The participants had to fill out a pre-test questionnaire and a longer ques-
tionnaire after one month of usage. Usage logs were captured by the sis

version used.

The interface was delivered in four different default configurations:

1. Top View, ordered by date.
2. Top View, ordered by rank.
3. Side View, ordered by date.
4. Side View, ordered by rank.

Participants were able to change the default sort order by themselves.

Log files showed that participants made 4.4 queries a day, but the number
had a high variance among users. Like many other studies on search inter-
faces, the participants did not make much use of Boolean expressions and
they used short queries (average of 1.59 words). Due to the good interface
design, participants made use of frequent direct filter manipulation.

The queries showed that people were important factors for searching infor-
mation:

} The most common query types in our logs were People/places/
things, Computers/internet and Health/science. In the People/
places thing category, names were especially prevalent. Their
importance is highlighted by the fact that 25% of the queries
involved people’s names suggesting that people are a powerful
memory cue for personal content. In contrast, general informa-
tional queries are less prevalent.

It is important, however, to notice that participants used the sis interface
mainly to search for Outlook emails. This was proved by the type statistics
of opened items: “Email was by far the most common type opened (76%),
followed by web pages (14%) and files (10%)”. Queries related to people
are possibly more prevalent when people are searching within emails.

As also shown by Gibson, Miller, and Long (1998) and Leung et al. (2008),
most opened items were not very old. Hence, providing user support for
finding the most recent items is an important issue.

35

2 Research Background

Figure 2.10: The sis interface, with the Side View. The query input box and a simplified
version of the filters are located on the left side. The right-hand side is filled
with the result set. Compared to the Top View this leaves more space for
results and offers simpler and easier use of filters. [Source: Dumais et al.
(2003)]

} Overall, 6.6% of the items opened were first seen that day,
21.9% within the last week, 45.9% within the last month, and
89.4% during the last year. Not surprisingly, recent items are ac-
cessed frequently, but the distribution has a long tail with items
up to eight years old being opened.

A result set sorted by date was more popular among the participants than a
result set sorted by the rank algorithm which was included. This might be
a direct consequence of the fact that users mostly tended to access recently
modified items.

36

2.2 PIM Tools

The questionnaires reported positive reactions from the participants (“Users
were overwhelmingly positive about sis”). Obviously, there was a need for
this kind of desktop search interface. From the comments of the respon-
dents the researchers could deduce that “they had trouble understanding
different kinds of searches such as fuzzy match and Boolean queries”.

Participants reported the problem of items being wrongly categorized in
the storing process:

} People also said that sis was helpful for finding things that
were “buried” or filed in the wrong location. Even people who
regularly file email and documents, often misfile information,
or create new folders with slightly different names.

To my knowledge, sis was never released to the public.

2.2.10 Phlat

As a direct successor of the sis project described in the previous section,
Phlat resembled an enhanced version of sis with added functionality. Phlat
was described in Cutrell et al. (2006). The authors described their goal
as “[r]ather than viewing search and browse as separate behaviors, Phlat
treats them as two ends of a smooth continuum”.

Tagging was added to the interface. The same interface was used to ap-
ply tags to items and for filtering by applied tags. Tags were stored either
as ntfs properties (files only) or as mapi properties (Outlook/Exchange
emails only). Users had to tag everything by themselves and tags were not
of any use outside the Phlat interface. There was no tag recommendation
system and the paper did not mention any tag completion mechanism.

All currently applied filters were made visible in the query area in order to
make perfectly clear what and which filters are active.

An interesting design decision was reported for the question whether to
show the document title or the document file name in the result set:

37

2 Research Background

Figure 2.11: The Phlat interface. The interface is quite similar to the Side View of the sis

interface. Tagging functionality as well as an enhanced filter overview was
added. [Source: Cutrell et al. (2006)]

} [W]e found that users prefer to see the filename rather than
the document title. This is because document titles are often in-
correct, misleading or simply empty for many files. Since users
typically name their own files, it is the filename that they recog-
nize rather than the document title.

The authors evaluated the Phlat interface with 225 participants over a pe-
riod of eight months. The study was similar to Dumais et al. (2003) but
without questionnaires and without variation of any default settings. Re-
sult sets were ordered by date by default.

As an interesting side note, the number of items indexed on participants
computers varied significantly:

} The size of the personal indices of this sample of users varied
by almost 2 orders of magnitude, ranging from 5733 items to

38

2.2 PIM Tools

more than 472000 items. The median index size was 36182 items.

For log analysis, Cutrell et al. divided log entries into sessions. Those ses-
sions reflected participant behavior to launch several related queries in a
short period of time.

} [W]e defined a session as all queries with an inter-query in-
terval of less than 5 minutes. When the inter-query interval was
longer than 5 minutes we checked the semantic content of the
subsequent query by comparing the query terms. If it was dif-
ferent, that query started a new session.

Using those kind of metrics, participants usee 3.61 queries in an aver-
age session. Quite similarly to Dumais et al. (2003), queries were short
(1.60 words on average), usage of filters was high, usage of Boolean expres-
sions was very low, and the most popular filters were for persons and item
type. Phlat was mainly used for searching in Outlook emails.

The result sets were rather large with an average of 478 entries and a huge
standard deviation of 3184. Despite this high number of items in the result
set, participants chose to browse further down in the result set, if necessary.
In contrast to web search, only 30 percent of all items invoked were within
the top three positions.

Within one session, 2.5 items were invoked on average. However, in one
quarter of all sessions, participants did not invoke any item at all. This
did not mean that those sessions did not bring the desired information.
Participants could have spotted the information within the item preview
in the Phlat result set. Outlook emails and Outlook appointments were
the most common items invoked (80 percent) followed by Word files (six
percent). As already mentioned above, Phlat was mainly used for searching
within Outlook data.

The use of tagging was quite high: one third of the participants used tags
at least at some point during the study. Fifteen percent of all usages of
filters involved filtering by tags. This was a remarkable result because other

39

2 Research Background

studies concluded that users do not want to take on the additional effort of
tagging 10.

In contrast to Dumais et al. (2003), Cutrell et al. did not use questionnaires,
but the possibility to send feedback via email. This feedback was generally
“classified as bug reports, functionality requests, complaints, and comple-
ments”. Some of the feedback emphasized the need for new pim meth-
ods:

} Our users are particularly enthusiastic about the idea of cross-
source searching and tagging. We repeatedly heard users de-
light that they didn’t need to worry about where an item was
stored, and many loved the idea of creating a single organiza-
tional structure (tags) that spanned email and files (though, as
noted above, only a small number of users regularly employed
tags).

Some participants reported additional needs for preview views, thumb-
nails, and better integration into Outlook and Windows. They also wanted
better integration into other applications as well. For some file types, such
as Microsoft PowerPoint and Microsoft OneNote, the file-based nature of
Phlat was too broad. Those file types often contain a larger number of
smaller independent information units. But Phlat is only able to tag and
filter files and not smaller information units, as Haystack was able to (see
Section 2.2.7).

The delay between file updates and index updates was an issue to many
participants. File transfers to a non-ntfs file system (like thumb drives) pre-
sented another problem, resulting in losing tags. The same thing happened
when an email was stored outside of Outlook or forwarded to another per-
son. The authors noted that “if the metadata of tags is too fragile, users will
stop spending the time and energy to use them!”

Tagging was mentioned very positively in the feedback emails:

10. Sauermann and Heim (2008): “In general, the approach of the users is to only model
when it is necessary and needed later”; Whittaker, Matthews, et al. (2011); . . .

40

2.2 PIM Tools

} Despite its many limitations, our tagging system is used quite
extensively by a subset of users. Clearly, our users find the idea
of universal tagging compelling.

The experience and feedback related to tagging lead to the following state-
ment in the outlook of the paper:

} Filing will become less important and will be replaced by
more general tagging systems.

The authors released Phlat for public download. 11 Currently, the most re-
cent downloadable version (1.0.2299.14990, 2006-04-19) is regarded as out-
dated and discontinued. It is quite questionable whether this version of
Phlat could be installed on a current version of Microsoft Windows due
to its dependency on old versions of Microsoft Search (up to Windows xp)
and lack of maintenance.

2.2.11 Attribute Browser

Marsden and Cairns (2003) tried to surpass the problems of strict hierar-
chies of folders by using a relational database approach. Their Attribute
Browser separated the storage format from the access visualization:

} [W]e believe that the operating system file browser be changed
to interact with the file store as dynamically as one can interact
with data stored in a relational database. It is not important
to the user how the files are stored on disk (performance con-
straints aside) but the user should be free to choose how those
files are viewed and retrieved.

[. . .]
[O]ur system must present files to a user in a way that lets

them perform the following operations in the simplest way pos-
sible: restrict, project, union, intersection, difference, group-by
and order-by.

11. https://research.microsoft.com/en-us/downloads/0cdb50f3-ccf6-4198-b874-4643791d4dc4/
– retrieved on 2012-09-01.

41

https://research.microsoft.com/en-us/downloads/0cdb50f3-ccf6-4198-b874-4643791d4dc4/

2 Research Background

By using only implicit metadata such as size, creation date, access date,
item type and so on, users were able to filter their items accordingly. In
usual file browsers this was only possible within one folder view. Users
were able to store queries and combine queries to filter items.

To my knowledge, the research prototype implementation presented in
Marsden and Cairns (2003) was never evaluated or released to the pub-
lic.

2.2.12 MyLifeBits

Following the memex idea presented in Section 2.1.1, Gemmell, Bell, and
Lueder (2006) described an approach which originally did not cover pim

issues related to information retrieval methods. With Gordon Bell’s per-
sonal information as a reference collection, the project started to digitize
and store as much information as possible:

} Since we can’t predict when an old bill, conference announce-
ment page, attendee list, or business card will be required, the
easiest and safest thing is to simply keep it all.

In the first phase, they scanned all legacy paper documents, photographs
and much more. Together with digital artifacts, they put everything into
a well-designed folder hierarchy. Phase two was planned with including
“real-time capture of conversations, meetings, sensor readings, health mon-
itors, and computer activity”. In the opinion of the authors, with one Giga-
byte of non-video data added to the repository, a Terabyte hard disk should
be enough to hold eighty years of personal data. They, however, also stated
that in the future users “expect to record their lives more extensively”.

The basic idea behind the project, the process of digitizing analog artifacts,
and the benefits of having such a complete digital repository is also de-
scribed in the book “Total Recall” (Bell and Gemmell, 2009).

The original project wanted to avoid databases and use folders and short-
cuts instead. However, more powerful abilities were desired during the

42

2.2 PIM Tools

project (Bell and Gemmell (2009, pp. 40–46) and Gemmell, Bell, and Lueder
(2006, p. 90)).

The new project was called MyLifeBits. It basically consisted of a Microsoft
sql server database that held twenty attributes for each item. Depend-
ing on the item type, additional attributes could be stored. Links could
be made implicit, for example, by time: photos could be linked implicitly
with records of gps positions or a calendar events. Explicit links could be
created manually as well.

Legacy applications were also integrated. Microsoft Outlook emails were
monitored and ntfs folders were synchronized as well. Many legacy appli-
cations could not be integrated, since they relied on hierarchical structure
managed within the application domain.

Additionally, the system was able to capture the content of each visited web
page, every instant messaging protocol, telephone conversations, radio and
tv programs, and all mouse/keyboard activity.

The main interface was the MyLifeBits shell, which visualized queries as a
list containing thumbnails of images and a timeline view. In contrast to the
results, which will be discussed in the Section 3.4.2, “[the authors] deemed
search to be the most critical requirement”.

A very clever way of reviewing items was the use of a screensaver. This
screensaver application showed stored items at random and allowed an-
notating items using written text or audio annotation. The authors noted
that items like photographs were of better value when they were annotated
with explicit metadata as well.

The subjective feedback from Gordon Bell (Gemmell, Bell, and Lueder,
2006) reveals an overall positive picture: “[h]aving a surrogate memory
creates a freeing, uplifting, and secure feeling.” He also routinely visited
web pages to use the capture mechanism “just to ensure having a copy”.

Discussing the aspect of hierarchical folder structures versus database links
the authors noted that “one might conclude that no organization is needed”.
In comparison to the traditional hierarchy, they stated that “both views are
valid”. Although “[s]pecial skills are required to construct useful classifi-
cations”. In relation to the search versus navigation topic: “full-text search

43

2 Research Background

is not enough; in our experience, many items require some other attributes
to be found”.

In MyLifeBits, the user had to annotate items, if she wanted to add things
not covered by the implicit metadata:

} But even with convenient classifications and labels ready to
apply, we are still asking the user to become a filing clerk –
manually annotating every document, email message, photo, or
conversation.

To limit this manual effort, the authors answered:

} [S]top throwing out any potentially useful meta-data. Time is
probably the most important attribute in our database.

[. . .]
[C]apture itself must be more automatic on this scale so the

user isn’t forced to interrupt their normal life in order to become
their own biographer.

With the development of the Microsoft SenseCam, the surrounding analog
world could be digitized a little easier to give impression of what hap-
pened. SenseCam was a neck-worn device, which had several sensors for
infrared, light, temperature and an accelerometer. By pressing a manual
button, each of these sensors were able to invoke a small fish-eye style
photograph. This resulted in a series of digital photographs whenever the
user moved, stood in front of another person, changed room and so on.
Converting those photographs to a video sequence allowed a quick reca-
pitulation of a day or an event. Combining those photographs with gps

sensor data allowed mapping onto a geographic map. 12 Some issues re-
lated to data capture with MyLifeBits as well as SenseCam were discussed
in Gemmell, Williams, et al. (2004).

Gemmell, Bell, and Lueder (2006) emphasized that “[r]eporting tools with
appropriate visualization are very useful applications”. They can give valu-
able feedback to the user.

12. For a study on the application of SenseCam data, see also Kelly, Byrne, and G. J. Jones
(2009).

44

2.2 PIM Tools

} A simple query-based tool can be remarkably insightful and
useful from “how I spend my time” to “count and space used”
by different items. Reports can track what is being worked on or
being thought about, for example by plotting the word “budget”
or “nominating committee” against time.

In the last years, the Quantified Self 13 movement gained support from
many people. Smart mobile devices contain more and more sensors. Dedi-
cated mobile devices for mobile logging of health data also provide useful
data.

MyLifeBits was a research platform used mainly by Gordon Bell. To my
current knowledge, unfortunately, no screenshots of the search interface
were published. It was considered a “proof of concept” (Bell and Gemmell,
2009, p. 50) and thus never released to the public. Aside from subjective
feedback, there was no evaluation outside the development team.

2.2.13 Semantic File System

The notion of representing metadata queries as virtual folders was a clever
way of achieving backward compatibility in conjunction with new retrieval
methods. Gifford et al. (1991) proposed a method for associative navigation
in the form of a semantic file system. They extracted attributes from files
and folders using so-called transducers. The authors defined “attribute”
as an “field-value pair”. Besides a default one 14, transducers were content
type specific. This way, they were able to extract attributes like day, cate-
gory, subject, author from New York Times articles; subject, recipient, and
sender from email messages, and so forth. Using virtual folder techniques,
the semantic file system listed matching items by navigating.

For example, the virtual folder /sfs/owner:/smith/text:/resume con-
tained items whose owner was the user smith where the word “resume”
was included in its content.

13. http://quantifiedself.com/ – retrieved on 2012-07-31.
14. By default, each item was indexed at least by ownership, group, folder, file name, and

file extension.

45

http://quantifiedself.com/

2 Research Background

Likewise, the folder /sfs/ext:/mail/from:/bob/subject:/Project listed
items with file extensions mail whose sender was “Bob” and where the
subject was set to “Project”.

The evaluation of the implementation concentrated mostly on performance
optimization issues and was basically carried out within the group of de-
velopers. Back in 1991, performance was a major drawback of such projects.
A set of anecdotal evidence examples showed that the system was “easy
to use”. And even “[u]sers outside [the] research group have successfully
used the query interface to locate information”. The authors claimed that
the semantic file system was effective for information sharing as well as for
command level programming.

To my knowledge, the semantic file system presented in Gifford et al. (1991)
was never evaluated with test persons or released to the public.

2.2.14 SemFS

A client-server system similar to the one discussed in the previous section
was described in Mohan, Raghuraman, and Siromoney (2006). In SemFS,
metadata, like owner or date of last modification, was used to browse a
virtual file system. Additional properties were extracted according to their
file format. For example, jpeg files were scanned for exif header data or
mp3 files were scanned for id3 data such as length or artist. The unix com-
mand line sequence “cd type:mp3^len>3m^artist:Mike” of a user was in-
terpreted as “chdired 15 into a virtual directory which lists all mp3 files sung
by ‘Mike’ of length greater than 3 minutes”. SemFS also provided basic file
tagging methods and versioning.

To my knowledge, SemFS was never evaluated in studies or released to the
public.

15. The term “chdir” stands for change current working directory.

46

2.2 PIM Tools

2.2.15 TagFS

A similar approach to the SemFS system described in the previous section
was TagFS (Bloehdorn et al., 2006). It consisted of a framework to interpret
file system primitives such as “list”, “change directory” as queries in an
rdf database and “copy”, “move”, “delete” as change operations on these
rdf metadata. This way, a folder path resembles a query of a set of tags that
fulfill items attached to the tags. Its semantics consist only of a “hasTag”
relation, where “adding or removing a file from a directory is mapped to
adding or removing metadata”. Hence, “/lisa-ekdahl/favourite trans-
lates to hastag(hastag(/,‘lisa-ekdahl’),‘favourite’)”.

The authors implemented “TagFS as a set of Views and ClassHandlers for
SemFS” 16.

It seems to be the case that there is no possibility to delete files within TagFS
since the delete command translates solely into a delete command for the
metadata associated. Items, whose metadata is removed, are probably no
longer reachable by navigating the TagFS. I could not check this assumption
for myself.

The source code of TagFS 17 can be downloaded from a web site 18. Due
to the fact that the last changes in the repository are dated 2006-07-24, the
repository is considered unmaintained. There was no license information
attached to the source code.

To my knowledge, TagFS was never evaluated in studies.

2.2.16 hFAD

The position paper of Seltzer and Murphy (2009) discussed the problems
of hierarchical file systems and proposed a new approach at a technical
level. The authors claimed that the file system hierarchy “has outlasted its

16. Please note that the “SemFS” of Bloehdorn et al. (2006) is not related to “SemFS” as
described in Mohan, Raghuraman, and Siromoney (2006).

17. The Linux-version of TagFS was implemented in Java using libfuse2.
18. http://isweb.uni-koblenz.de/Research – retrieved on 2012-08-04.

47

http://isweb.uni-koblenz.de/Research

2 Research Background

usefulness”. Seltzer and Murphy argued that “a hierarchical namespace
suffers from the following problems”:

• Users no longer know where their files are stored.
• One file might belong to several collections.
• Navigating hierarchical namespaces requires long navigation paths

using too many “index traversals”.

Replacement file systems should provide backward compatibility, separate
naming from access, treat items as opaque sets of bytes to allow applica-
tions to use their own structure, and allow direct access to data. Although
databases possess certain properties that would allow for them being a re-
placement for current file systems, they are “ill-suited” and “heavy-weight”
for this purpose.

Seltzer and Murphy (2009) proposed a new architecture for file systems.
They called it hfad which stands for “Hierarchical Filesystems are Dead”.
Instead of a hierarchical namespace, hfad used “a tagged, search-based
namespace”. Objects in hfad had a unique id and were “named by one or
more tag/value pairs”. Additionally to traditional posix file operations like
read or write, methods like insert and truncate were introduced. They
allowed inserting bytes at a given position and removing bytes from the
end of an object.

hfad was implemented with Linux/fuse, Berkeley db, and Lucene for full-
text indexing.

The authors stated that “the description of hfad above is incomplete, and
there are a variety of open research questions associated with this work”:

} We encourage other researchers to design their own imple-
mentations, and we look forward to the comparisons of different
implementations and how well these new system work relative
to historical practice.

Although a public source code repository exists 19, it is marked as “pre-
alpha”, contains only a source code stub, and was last modified on 2009-
07-18. Therefore, the implementation is considered never released to the

19. http://sourceforge.net/projects/hfad/ – retrieved on 2012-08-05.

48

http://sourceforge.net/projects/hfad/

2.2 PIM Tools

public. There is no license information included in the repository stub, nor
in the project description.

To my knowledge, hfad was never evaluated in studies.

2.2.17 Feldspar

The Feldspar 20 interface was introduced and described in Chau, Myers,
and Faulring (2008b). The specialty of Feldspar was its visually appeal-
ing approach of defining associations for information retrieval. By select-
ing from seven types of characteristics, the user could easily look up “the
folder containing the email attachments received through email from Brad
or Spence” 21 or “the webpage mentioned in the email from the person who
I met in May”, as illustrated in Figure 2.12.

The interface contained a narrow navigation bar at the top, a large query
area in the middle, and a result area on the bottom. While defining a query,
the result area already showed results matching the current query defined
above.

Feldspar was programmed in C# with Microsoft Expression Blend 2 for
its gui. It used the database of Google Desktop Search as the sole source
of information. It supported “seven data types that [the authors] thought
were the most common things that people want to find. They [were] Email,
Person, File, Folder, Webpage, Event, and Date”.

Chau, Myers, and Faulring (2008b) described an evaluation of Feldspar.
Eight participants had to pretend to be a fictitious user and use his data 22

on his computer to search for information. The within-subjects study com-
pared two conditions: Feldspar and conventional methods of the tools in-
volved 23. Each participant had to do seven tasks (three simple ones, four
more difficult ones) on one condition and seven other tasks on the other

20. Feldspar stands for Finding Elements by Leveraging Diverse Sources of Pertinent
Associative Recollection.

21. Illustrated in Figure 2 of Chau, Myers, and Faulring (2008a).
22. Fictitious emails, files, calendar events and visited web pages.
23. Microsoft Outlook, Google Desktop Search, Windows Explorer.

49

2 Research Background

Figure 2.12: The Feldspar user interface. 1© The Navigation Bar. 2© The Query Area for
constructing queries. 3© The Results Area with the query represented as a
sentence at the top. 4© The main query area. 5© The user can freely edit the
type of association and swap its order with other associations. 6© Items in
queries are linked by the term “related to”. 7© The user can filter the results
by typing a filtering string into the textbox. 8© The date picker panel, which
allows the user to pick a data range such as May, or a specific date using
a calendar dropdown. At any time, the user can edit the query by selecting
different values and the results update immediately. [Source: Chau, Myers,
and Faulring (2008b)]

condition. A task was marked as not finished after four minutes without a
result.

With the more difficult tasks, participants were significantly faster with
Feldspar. The success rate was significantly higher when using Feldspar:
only two fails for the Feldspar condition and twenty-four fails for the con-
trol group using conventional tools. The subjective feedback (Likert scales)
was better for Feldspar in all six categories that were asked.

Chau, Myers, and Faulring (2008a) revealed additional aspects related to
design decisions, the Feldspar-predecessor interface Iolite, implementation
details and future work.

50

2.2 PIM Tools

To my knowledge, Feldspar was never released to the public. According to
Polo Chau, development of Feldspar was discontinued.

2.2.18 Personal Project Planner, Planz

Like Malone (1983) was a qualitative study on how people organized their
desk, W. P. Jones, Phuwanartnurak, et al. (2005) was a study to obtain
qualitative feedback on how people organize their projects. It showed that
people depended on their folder hierarchy to structure projects. This also
emphasized the importance of navigation compared to search. Besides the
obvious limitations of folders, the study also revealed some additional is-
sues:

• Aside from alphabetic order, there was not much support for alterna-
tive ordering. This resulted in folder names starting with something
like “aa ” to enforce items appearing on top of the list.
• Folder names like “images” or “references” were used many times

somewhere in the hierarchy of folders. Depending on the context of
the folder, such folders were used for organization and re-use of con-
cepts but “scattered throughout [the] file folder hierarchy”.
• Similar sub-structures of file folders could be found for similar proj-

ects. However, the traditional folder hierarchy does not support easy
re-use of certain structures.

The paper concluded with the following summary of the situation:

} If, more generally, folders help people to understand and “see”
their information better, it is reasonable to ask “can we do bet-
ter?” What about better representations that make it easier for
people to order folders (as they would like to order the com-
ponents of a project)? Why not better support for the use and
re-use of folder structure as a first-class object? (Perhaps we can
start by supporting a “Paste Structure” option.). These and other
questions naturally arise from the study of how people organize
information to get things done.

51

2 Research Background

In W. P. Jones, Bruce, et al. (2009), qualitative analysis was taken one step
further. Twenty-seven participants were interviewed on the projects they
were working on. One project was chosen to be representative and follow-
up sessions were held, where the participants showed and described the
projects to explain the “how” and “why”. Audio recordings of the sessions
were transcribed.

The results from this study revealed important insight into how people
used tools and methods to organize their projects. Despite the high-tech-
nology environment the users were living in, paper was still very important
to them. They regarded paper as “satisfying”. Participants liked the idea of
having everything in one place. Such project folders containing project files
gave them a feeling of being in control. Contact to other people had much
impact on the participants. It could be “help or hindrance in a project’s
completion”.

} People can also support a project through direct assistance or
by providing information of direct relevance to a project. Of po-
tentially equal importance, participant comments suggest that
other people can be an important source of motivation and emo-
tional support.

For example, people may organize their information for rea-
sons similar to those that motivate us to straighten up our houses
when guests are coming. We do so as not to look bad in the eyes
of others. But we also benefit from the greater order that results.

There was an important aspect, which was is reported by other user stud-
ies as well. Participants reported that the fact, that they had to talk about
their pim methods in the study, actually helped them to become more or-
ganized.

In order to support users in managing their projects, pim methods, there-
fore, should support short notes and snippets, which are independent of
the classic office applications. Users should be able to write easily and fast.
Having the information in view was an important factor as well: sometimes
users need overview, sometimes they want to see tasks which are com-
pleted to get a feeling of accomplishment. Similarly to many other stud-

52

2.2 PIM Tools

ies, navigation within a structure was recognized as an important method.
Folders gave users a feeling of being in control.

W. P. Jones, Klasnja, et al. used the findings from their studies to imple-
ment a research prototype, which was called Personal Project Planner 24(or
in short: the Planner). It was described in W. P. Jones, Klasnja, et al. (2008).
The Planner was implemented in .net 2.0 and provided rich-text overlays
to folders. User data was stored in xml fragments on a per-folder basis.
The gui traversed the xml files in the current folder and each sub-folder
and visualized them in an outline view. References to files, Outlook emails,
and Web Uniform Resource Locators (url) could be easily included at any
location:

} The Planner supports the creation of a rich-text project plan
as an external representation that organizes not only component
tasks (e.g., “find out what the budget allows”), but also the in-
formation needed to complete these tasks. Two principles are
key to the Planner’s design:

• No new organization. Project plans are simply an alternate
way to view and work with a folder hierarchy in the file
system. The headings/subheadings of a plan correspond
to folders/subfolders in the file system.
• Organize incidentally. Project-related information is orga-

nized as a by-product of a plan’s elaboration.

Many features of the Planner supported easy and fast information input.
“Drag & link” was an advanced drag & drop implementation: when a user
dragged text from a web page, Outlook message or an electronic docu-
ment, the Planner also created a link back to the origin of the text. With
“in-context create” the user was able to create new documents or Outlook

24. The Planner was influenced by Kaptelinin’s work on a umea prototype (Kaptelinin,
2003), Giornata (Voida and Mynatt, 2009) and WikiFolders (Voida and Greenberg, 2009).
There are some parallels to personal wiki systems like Zim, The Brain, Refinder (pre-
viously known as Gnowsis) or online services like WorkFlowy. For the Emacs editor,
there is an extension called Org-mode, a very advanced and extensible pim tool (Do-
minik, 2010) which can also be used to create highly complex documents (Schulte and
Davison, 2011; Delescluse et al., 2011; Schulte, Davison, et al., 2012). The Planner shows
the tightest integration into file system folders.

53

http://en.wikipedia.org/wiki/Personal_wiki
http://zim-wiki.org/
http://www.thebrain.com/
https://www.getrefinder.com/
https://workflowy.com/
http://orgmode.org

2 Research Background

Figure 2.13: Screenshot of Planz (courtesy of William P. Jones).

emails within the Planner. Folders in the file system represented tasks. Re-
ordering items was very easy. Outlook information for “remind by” or “due
by” could be associated with a folder within the Planner.

The study contained an evaluation of the Planner. It started with a five-
minute video presenting the basic features. After installing the Planner on
the participants’ computer, an example project was chosen. With this real-
world project, the participants had to outline the project’s structure with
Planner. Afterwards, the participants had to fill out Likert-scale question-
naires to express their estimated frequency of usage of key features.

Results showed that participants generally rated features like drag & link,
system integration, in-context create, outlining and item re-ordering very
high. Significantly lower-rated (but also high) were task management and
folders as tasks.

In W. P. Jones, Hou, et al. (2010), the Personal Project Planner was renamed
Planz. Its implementation for the version 7.2 was carried out using .net 3.0.

54

2.2 PIM Tools

Planz received several new features: a synchronization with the file system
mechanism, html export for printing or reusing project data, structure
export and re-use, an advanced xml format, and support for additional
views.

This study compared Planz to their current work flow for finishing projects.
Eight participants were interviewed. For each participant, two ongoing
projects were chosen. One was finished with the current tools, the other
was finished with the help of Planz. The test users also gave guided tours
to explain their current system. Final questionnaires were sent via email.
The duration was between five and twelve days with a minimum of five
business days.

There was no clear winner in the results. For email management, partic-
ipants seemed to prefer their current setup with Microsoft Outlook. For
getting an overview of the project, participants seemed to have a tendency
to prefer Planz.

The most current version of Planz is 8.2, which supports Windows Vista/7,
and Microsoft Office 2007. Microsoft Outlook 2007 is recommended. The
QuickCapture feature allows quick capturing of items including links. Other
new features are better support for flag/check options and in-place folder
expansion.

Planz is licensed under a gpl version 2 license and can be downloaded for
free on the kftf-website 25.

2.2.19 LiFiDeA and Associative Navigation

Users do not invest much effort to add metadata to information (Rodden
and Wood, 2003; Sauermann and Heim, 2008). Yet they approve of using
advanced interfaces, which provide retrieval methods based on metadata.
J. Kim et al. (2010) described an approach which tried to combine semantics
with information retrieval:

25. http://kftf.ischool.washington.edu/planner_index.htm – retrieved on 2012-08-
03.

55

http://kftf.ischool.washington.edu/planner_index.htm

2 Research Background

Figure 2.14: The LiFiDeA user interface. The page of a concept “Search Engine” showing
related documents and concepts. [Source: J. Kim et al. (2010)]

} In an effort to keep the benefit of structured data while min-
imizing the cost for the user, we propose a simple model of se-
mantic representation for personal information. It is composed
of (information) items, tags and the links between items. Items
here represent information objects with textual contents. These
objects can be documents collected from many sources, or con-
cepts – entities and terms of interest to the user. Tags and links
are the metadata that enables the grouping or the association of
individual items.

The paper introduced a prototype system called LiFiDeA 26 (Figure 2.14).
Documents and concepts could be tagged. Information items were col-
lected from several sources including files, email, and Rich Site Summary
(rss) feeds. Metadata was derived during the collection process. Concepts
were automatically extracted by the software. The user was able to create
concepts manually as well.

Users were able to carry out faceted search. Within the retrieval interface,
users were presented a ranked list of related items. Using the tags and

26. The authors derived the name “by combining the words ‘life’ and ‘idea’”.

56

2.2 PIM Tools

links generated by the software, users were able to navigate. This provided
associative navigation.

When a user clicked on items in the result set, “the system collects the
user’s clicks on relevant concepts and uses them as training data for ad-
justing feature weights”. This method improved the semantic relations of
items during system usage.

The authors evaluated LiFiDeA with “two rounds of game-style user stud-
ies”:

} In the first round, users were asked to find the target docu-
ment using only search and associative browsing between docu-
ments. In the second round, concepts were available for search-
ing and browsing, thereby providing a full access to the seman-
tic representation.

Results were quite promising and the system showed a fast learning re-
sponse:

} Our evaluation suggests that the semantic representation is
useful for known-item finding tasks, especially when concepts
are used in addition to documents. Users browsed a lot, and that
led to higher success rates. We also found that the combination
of features significantly improves the quality of suggestions, and
that learning combination weights takes less than 100 clicks.

In J. Kim (2011) the authors developed a model in order to simulate infor-
mation retrieval behavior for known item finding.

} Our goal is to build a reasonable simulation of the actual user
behavior for the evaluation of our system for the known-item
finding task. The user model is parameterized to simulate vari-
ous aspects of the user. While we do not argue that experiments
based on a simulated user model can be a substitute for user
studies, they provide a valuable means of evaluating the system
under various conditions, complementing evaluation methods
where users are involved.

57

2 Research Background

The simulated users were expected to start with a keyword search. If the
known item was not in a certain range of the result set, users either did
another query or started browsing the result set. When a user was not able
to locate the item within ten trials, the attempt failed.

User knowledge varied upon their knowledge and ability to make a wise
choice within the result set. Another variation was achieved by using either
a depth-first or a breadth-first strategy. By altering the value of fan-out,
simulated users clicked more or less in the ranked list.

The simulation was run multiple times on a data set of real world infor-
mation (emails, web pages, publications, lecture notes) in order to consider
effects of randomized parameters (user knowledge for example).

In comparison to the study of J. Kim et al. (2010) using human participants,
the assumption in the simulated model seemed to be reasonable.

Results showed that “associative browsing is quite effective”:

} Overall, the informed user with a fan-out of two gave the best
performance.

[. . .]
[O]ne or two clicks are usually sufficient to get to the target

document by browsing.
[. . .]
We can conclude that the user’s level of knowledge has a di-

rect influence on the efficiency of browsing.
[. . .]
[W]e can infer that higher levels of knowledge makes ex-

ploitation more valuable than exploration.
In summary, the simulation experiments show that associative

browsing provides an effective (30–40% of success) and efficient
(within 1–2 clicks) way of getting to the target document when
keyword search is marginally relevant.

LiFiDeA was released to the public on github 27.

27. https://github.com/jykim/lifidea/wiki/ – retrieved on 2012-08-07.

58

https://github.com/jykim/lifidea/wiki/

2.2 PIM Tools

2.2.20 Faceted Search, Faceted Navigation

Figure 2.15: Faceted search on
eBay.com. [Source:
http://ebay.com –
retrieved on 2012-
08-05]

Information retrieval using facets is a hybrid
method of search and navigation. It is widely
used in web shops, for example. Figure 2.15

shows a screenshot of the web interface of
eBay. Looking for a computer, the user is able
to enter a price range, define the device type
in general and so forth.

In the example of Figure 2.15, the facets are
“Type”, “Screen Size”, “Memory” and so on.
Each facet has a set of pre-defined values. Typ-
ically, a user can choose no value or up to sev-
eral values per facet. In the example the val-
ues are “Notebook” and “Ultrabook” (for the
facet “Type”), “12–12.9 inches” (for the facet
“Screen Size)”, “2 GB or more” (for the facet
“Memory”) and so on.

According to the definition used in Perugini
(2009), “Facets are ‘clearly defined’, mutually
exclusive, and collectively exhaustive aspects,
properties, or characteristics of a class or spe-
cific subject”.

The idea of classification using facets is not
a new one. They were invented under the
name Colon Classification of the Indian li-
brarian and mathematician Sirkali Ramamrita
Ranganathan (Ranganathan, 1933).

Marti Hearst did important research on mod-
ern interfaces using facets (Hearst, 2009,
Chapter 8.6). In Tunkelang (2009) all impor-
tant aspects of facets and their usage are de-
scribed as well. Tunkelang defines the differ-
ence between faceted search and faceted naviga-

59

http://ebay.com

2 Research Background

Figure 2.16: The Flamenco faceted search interface. On the left-hand side there are the
facets with their values. The currently selected values are “Asia” (facet “Loca-
tion”) and “fabrics” (facet “Shapes, Colors, and Materials”). [Source: Yee et al.
(2003)]

tion such that faceted search is faceted naviga-
tion combined with free text search.

There are many information retrieval inter-
faces which use faceted search or faceted navigation aspects. One of the
earlier research projects was Flamenco (Hearst (2009, pp. 189–195); Tunke-
lang (2009, pp. 33–35)).

Release 1.0 28 of Flamenco was made public on the project web site 29. It
is licensed under a bsd license and was the subject of many studies and
papers such as Hearst (2000), Hearst et al. (2002), Yee et al. (2003), or Hearst
(2006).

28. It requires Python version 2.3 or higher, a web server such as Apache that runs cgi

scripts, and an odbc-compliant dbms such as MySQL.
29. http://flamenco.berkeley.edu/download.html – retrieved on 2012-08-06.

60

http://flamenco.berkeley.edu/download.html

2.2 PIM Tools

Tunkelang (2009, Chapters 4–5) lists further faceted search interfaces such
as mspace (mc schraefel, University of Southampton) and parallax (Huynh,
mit). Querium, a faceted search interface from Golovchinsky and Diriye
(2011), won the hcir 2011 Search Challenge at the chi conference.

Chau, Myers, and Faulring (2008b) elaborated as to why their Feldspar
approach (described in Section 2.2.17 and illustrated in Figure 2.12) differs
from faceted search:

} Although faceted search [. . .] also works incrementally, it is
fundamentally different from Feldspar’s multi-level associative
retrieval. Faceted search allows the user to find an item by in-
crementally specifying its characteristics internal to the item it-
self. Multi-level associative retrieval, on the other hand, often
requires both internal and external characteristics. For example,
in the query “find the file that was received from Bob, authored
by Sue, and modified yesterday”, modified yesterday is an internal
characteristic of the file, while Bob is an external one. These two
retrieval strategies require different algorithms.

61

I must love what I destroy
And destroy the thing I love

Moon over Burbon Street
Sting

3 Challenges

This chapter summarizes selected issues, which currently prevent users
from having the best possible user experience related to managing their
personal data. Subjective conclusions are drawn based on my personal ex-
perience and results from cited research work. Some of the challenges are
based on the fact that our environment is constantly changing. Other chal-
lenges relate to the users suffering from bad pim. The development of tools
either for research or as products has room for improvement as well. Re-
searchers have their “blind spots” by not trying to shift their focus and by
not studying issues out of main stream. The methods for obtaining good
pim solutions also affect the output in terms of pim prototypes or prod-
ucts.

3.1 Changing Environments

The environment we work in is constantly changing. The number of files
increases, the applications we use change, cloud-based services store our
personal data outside our influence. Future developments will keep on

63

3 Challenges

challenging the methods and tools we use. What is probably a good so-
lution now does not have to be of any use tomorrow. Things have to be
re-evaluated, improved, and constantly adapted.

3.1.1 Increasing Number of Files

The first file systems were developed in the 1950s. Back then, the focus was
to organize and manage, perhaps dozens or hundreds of files due to the
clear technical limitations.

With the introduction of hard disk storage built into every desktop com-
puter, a large amount of storage space was available to keep more and more
data for direct access. Additionally, the average hard disk capacity doubled
every few years. Although the average file size increased as well, this could
not compensate the storage space that resulted from this impressive devel-
opment.

Jarrett and Systems (1982), still in an office world dominated by classic
paper, mentions that the volume of paper used by an average office worker
is 20,000 pages and rising at 2,000 per year. The test persons in a study
mentioned in Barreau and Nardi (1995) had 2,400 to 31,000 files on their
office computer. But nowadays, an average computer user has hundreds of
thousands of files on his primary hard disk, not counting external disks and
backups. In Gemmell, Bell, and Lueder (2006) the personal digital archive
of Gordon Bell contained 245,371 items including over 97,000 emails and
PDF files of over 70,000 visited web pages. His non-video content grew at
approximately 0.5 Gigabytes per month but in a nonlinear fashion. Cho, S.
Kim, and Lee (2009) found that “[t]he average of incremental volume per
day was increased by 4.35 times for [user home drives] and 17.42 times for
[scratch data drives] between 2006 and 2009.” Boardman and Sasse (2004)
mentioned average growth rates of 100 folders and 1,764 files within an
average observation time-frame of 286 days and eight participants.

My personal primary hard disk consumption 1 reflects this trend as well.
In Table 3.1 it is easy to see that the number of files stored increased

1. A quick informal survey with other people confirmed the approximate quantity and
tendency of this data.

64

3.1 Changing Environments

Month Capacity [gb] # Files # Extensions # Folders Files/Folder
1999-06 20 3135 150 225 13.9
2001-02 80 15599 377 1322 11.8
2012-06 2048 732296 3092 73004 10.0

Table 3.1: The statistics of my personal file system shows an increasing amount of infor-
mation. Each row consists of a month where the snapshot was done, the size
in gigabytes of the primary storage device that was used, the number of files,
the number of file extensions (reflecting the file type variance), the number of
folders, and the average ratio of files per folder.

dramatically up to over 730,000 files. This means an increase over three-
hundredfold within thirteen years.

Not only the number of files exploded: the increase of the number of dif-
ferent file extensions demonstrates a much larger set of different file types
to manage: from 150 different extensions 2 in the year 1999 up to over 3000

different file extensions in 2012.

To organize this amount of data, the number of folders scaled up as well. It
is noteworthy that the average number of files per folders stayed almost the
same, not changing in magnitude at all. Cho, S. Kim, and Lee (2009) found
similar numbers with an average of 16.85 files per folder within users home
folders.

With the number of files increasing and a more or less stable files per folder
ratio, files might tend to be stored more deeply in the hierarchy of folders.
This assumption was confirmed by Cho, S. Kim, and Lee (2009) as well:

} Most of the directories have less than 10 directory depth. We
detected that the averages of directory depths were increased by
1.16 in home directory and by 3.22 in scratch directory between
2006 and 2009.

So it is the case that many files had to move into folders which are deeper
in the hierarchy of folders compared to several years ago. This means that

2. The number of extensions normalized to lower case characters and filtered for file ex-
tensions containing only combinations of characters “a” to “z” and numbers.

65

3 Challenges

our navigational processes must have changed to visit more folders than in
the past.

A very high percentage of files never gets accessed at all. Observing large
sets of data for 157 to 287 days on different computer systems, Gibson,
Miller, and Long (1998) noticed that “fewer than 30% of the files [. . .] were
used”. Over a three month period, Leung et al. (2008) detected no access
for “more than 90% of the active storage”.

This high percentage of never-accessed files could indicate users’ inability
to locate them or the lack of knowledge of existence of those files. Strict
folder hierarchies do not support serendipity very well.

Following the comment from Lansdale (1988, pp. 57, 59), there might be a
high chance that a dramatic change in the environment (number of files to
organize, files deeper down in hierarchy, many files never accessed) com-
bined with not changing the method (file system with strict hierarchy of
folders) probably leads to a system which does not fulfill the requirements
anymore.

3.1.2 Non-Textual Content

In the last century, most personal information was based on text – either in
human-readable text files or in pseudo-standardized binary formats for of-
fice products. As shown in the previous section, not only has the number of
files increased since then. The explosion of the number of file extensions is
a sign of a dramatic increase in file formats. In Chapter 12 of Hearst (2009)
these “emerging trends” towards multimedia content are described. Much
information is stored within audio, video, and photographs. Conventional
information management tools are not able to search this kind of content
or extract valuable key phrases. Different retrieval techniques have to be
developed (Hearst, 2011), otherwise, a blind spot in pim will emerge.

66

3.1 Changing Environments

3.1.3 Scattered Storage Locations

A few years ago, the personal information of a user was more or less on
one single device: her desktop computer. Today, many users possess a wide
range of devices, each holding a valuable fraction of their personal infor-
mation: a desktop computer at work, a desktop computer at home, a note-
book, a smart-phone, miscellaneous hard disk storage devices for extension
and backup, and probably one of those nifty new tablet computers. This
information storage mess is made even worse by a large number of dif-
ferent cloud services storing personal information. We simply can not tell
any longer, where our data resides. This information fragmentation is dis-
cussed for example in W. P. Jones (2007, p. 392), W. P. Jones and Teevan
(2007, p. 270), and W. P. Jones (2012).

One possible solution to this problem of fragmentation is unifying (W. P.
Jones and Teevan, 2007, Chapter 8). This could be done at many differ-
ent levels. For example, we can try to bring our data back to a single
place. This allows for central indexing, navigating, and using our data. Such
an approach was chosen, for example, in the MyLifeBits project (see Sec-
tion 2.2.12).

I created a similar open, extensible solution called Memacs 3. It integrates
my personal data from sources like text messages (phone), phone calls,
photographs taken, updates on Twitter 4, rss feeds, bank statements, delicious-
bookmarks 5, version control commits (svn and git), email archives (mbox
or imap), Google calendar events, newsgroup postings, and so forth back to
my computer and onto my calendar. This way, my personal calendar turns
into a very handy tool which allows me to recapitulate what happened
when in which context. Additionally, this collected data is an important
source for looking up information related to me. Some data might still be
located somewhere in the cloud, but with Memacs, I am able to locate it on
my system and follow its link to the original data source.

3. Memacs is based on Emacs and Org-mode http://orgmode.org – retrieved on 2012-
08-10. The term “Memacs” is a combination of “Emacs” and “Memex”. It is described
and published on https://github.com/novoid/Memacs – retrieved on 2012-08-10

4. http://twitter.com/n0v0id – retrieved on 2012-08-10.
5. http://delicious.com/vk/ – retrieved on 2012-08-10.

67

http://orgmode.org
https://github.com/novoid/Memacs
http://twitter.com/n0v0id
http://delicious.com/vk/

3 Challenges

3.2 Users

Persons using pim tools are the focus group of pim research. However, this
group of people is neither homogeneous, nor static. Novice young users,
eager to play around with everything they can grab. Novice elderly users
who need assistance with exploring possibilities and features. Users who
need to use interfaces outside of their usual expertise. Experts who need to
have shortcuts and optimize their methods as much as possible. And those
are only a few examples of a whole spectrum of users out there. In many
cases, they all want to use the very same tool, the same interface. This is a
difficult task to do right.

For some challenges, we can develop methods and features to support this
variety of use cases. However, there are many challenges where the users
are able to improve their workflows enormously by learning and applying
simple things. Everybody in this whole system, from researchers to devel-
opers and users, is able to contribute to the situation.

3.2.1 Time Spent While Retrieving Information

Getting the right information at the right time is a crucial factor in our
information-workers’ world. There are many studies showing that a large
fraction of our daily work is lost due to inefficient search for information:
Feldman and Sherman (2001), Morville and Rosenfeld (2006, pp. 11–12),
Baeza-Yates and Ribeiro-Neto (2011, pp. 642–643), W. P. Jones (2007, p. 218),
Accenture survey 2007

6, and many more. A current study by McKinsey
(Chui et al., 2012) reported “28 hours each week is spent by knowledge
workers writing e-mails, searching for information, and collaborating in-
ternally”. The same study came to the conclusion that there is “20–25 per-
cent potential improvement possible in knowledge worker productivity”.
Hence, up to a quarter of productivity is wasted nowadays.

6. http://www.businesswire.com/news/home/20070104005159/en/
Managers-Majority-Information-Obtained-Work-Useless-Accenture – retrieved
on 2012-07-18.

68

http://www.businesswire.com/news/home/20070104005159/en/Managers-Majority-Information-Obtained-Work-Useless-Accenture
http://www.businesswire.com/news/home/20070104005159/en/Managers-Majority-Information-Obtained-Work-Useless-Accenture

3.2 Users

This problem is getting worse over time, as the findings in Section 3.1.1
indicate: we have to manage more and more files, we have to locate them
deeper in the hierarchy of folders, and we take longer navigational paths
reach to the files.

Large amounts of time and money could be saved if at least some of these
issues could be resolved. Technology can not guarantee to re-gain all of
this lost productivity, but many studies mentioned in Chapter 2 prove that
there is room for improvement in pim.

3.2.2 The Need for Diverse Interfaces

As stated above: users are different. Each and every one. Then how can we
address this diversity in designing user interfaces for pim?

A promising approach is the customization of user interfaces. In a very
basic form this means that any tool provides a reduced set of features and
a simplified version of its interface by default. An advanced version of its
interface could be activated by expert users at any time. More elaborate
software tools could allow a fine-grained set of feature-enabling prefer-
ences.

Reduced gui design is one of the key aspects of the popularity of Apple’s
os x or Google’s web services. In the western culture 7 this is also perceived
as clean, easy to use, and inviting to use and explore.

Contradicting the assumption of most software developers, the average
user only needs a small subset of features and gui elements visible. Ev-
erything else is clutter, taking away the user’s attention from the important
things. It is not an easy task to define which feature is essential and which
is not. Some tools, like popular web browsers provide only a basic fea-
ture set, and can be extended by a large number of add-ons or extensions
available for download.

7. According to Reinecke and Bernstein (2011), gui interface design is perceived very
differently by persons having a different cultural background. For example, a crowded
interface design is favored in other countries.

69

3 Challenges

Such diverse interfaces scale well with the growing knowledge and chang-
ing requirements of their users. For interface design, “one size fits all” is
always a trade-off, only really fitting a certain percentage. Users should be
able to customize the tools they use.

3.2.3 Teaching and Learning PIM

The assumption that most users are deliberately trying to optimize their
daily workflows is misleading. As Tognazzini (2011) mentioned for en-
gineers, it might be a common misconception that researchers are aver-
age users. We are not. In fact, pim researchers are probably the opposite
of the average user. Studies like Lane et al. (2005) or Peres et al. (2004)
show that on average people do not use even basic keyboard shortcuts like
Ctrl-C/Ctrl-V (for copy&paste), Ctrl-S (save), or Ctrl-F (find). Despite
the fact that using such keyboard shortcuts optimizes our level of efficiency,
they are seldom used.

However, keyboard shortcuts are not the whole story. Managing a huge
amount of personal information on multiple devices requires much more
skill than just being able to copy and paste using the keyboard. When a new
method is available, people seem to adapt to the new possibilities slowly.
Sauermann and Heim (2008) did a study with tagging data and remarked
that “[g]enerally, participants needed some time to learn how to model
effectively”. Participants do not have a cognitive model for their tags right
away. It needs time and experience to find a suitable way of making use of
tools providing tagging methods. Ulises Mejias summarized best practices
in an essay promoting tag literacy 8. In order to get the best out of tagging
systems, users have to learn these things either from others or through their
own (bad) experiences.

In my opinion, users which are new to tagging tend to start as describers,
using many tags which are also directly contained in the item itself. With
more experience on re-finding items using this new method, users tend
to become categorizers (Körner et al., 2010). Future long-term studies will

8. http://blog.ulisesmejias.com/2005/04/26/tag-literacy/ – retrieved on 2012-08-
12.

70

http://blog.ulisesmejias.com/2005/04/26/tag-literacy/

3.2 Users

bring more light to this topic. Anecdotal evidence shows that a controlled
vocabulary (cv) is often seen as an unnecessary limitation at first. There-
fore, this feature is seldom used by novice users starting to tag items. Peo-
ple start to get a feeling on the positive aspects a cv can provide either
through getting in touch with an experienced person who uses a cv or by
learning from bad experiences with homonyms, synonyms, singular, and
plural. However, most users never get this far. Best practices are not avail-
able or read only by a minority. The group of “non-changers” from Board-
man and Sasse (2004) comprised the majority of participants in their study.
Even when people are directly confronted with thoughts about their pim

workflow, most people do not seem to change their behavior at all. Haraty
et al. (2012) described issues regarding feature adoption by users.

There are exceptions. In both, Boardman and Sasse (2004) and W. P. Jones,
Bruce, et al. (2009), the authors mention strong influence on some partic-
ipants only because of the fact that they were part of a pim study. Some
people sensitive to this topic seem to get enthusiastic about optimizing
their pim workflows when they are forced to think about it.

Why not familiarize such users with thoughts on pim in the first place?
Being a participant in a study should not be the only chance to raise this
issue.

School The usual place where people learn basic knowledge is within
the educational system. Unfortunately, pim methods are not part of general
school education. It seems to be the case that each and every one has to
develop pim methods alone in practice – without having the opportunity
to benefit from best practices that have already proven to be of use. Com-
puter science 9 courses in most European schools consist of the ecdl

10. The
structure and content of the ecdl is aligned with Microsoft Office Products.
Unfortunately, it is more about the application of Microsoft Office features

9. In some countries this class is referred to as informatics or similar. In the uk it is called
ict (Information and Communication Technologies). There is now a move away from
teaching ict (Microsoft applications) in school, toward teaching computer science (in-
cluding programming and so forth).

10. http://www.ecdl.org/ – retrieved on 2012-08-09.

71

http://www.ecdl.org/

3 Challenges

and less about teaching concepts or different products at all. In my opin-
ion, such topics should be moved to other classes. For example, working
with spreadsheets should be learned in scientific subjects like mathemat-
ics or physics. In computer science class, pupils should learn basic digital
literacy and thinking about concepts and algorithms instead.

Books If a person is sensitive to topics like pim, she is able to get in touch
with other peoples’ summarized knowledge by reading books. Books are
still very popular. And there are many good books about pim as well. Bit
Literacy: Productivity in the Age of Information and E-mail Overload (Hurst,
2007) covers basic issues of pim from a pragmatic point of view. It is full of
best practices and tips 11 for common workflows. For example, it explains
why choosing the jpeg format for screenshot images is not a wise choice
at all. I think the things mentioned in the book by Mark Hurst should
be common knowledge for everybody. To some extent, the Getting Things
Done (gtd) method described in the best-selling book Getting Things Done
– The Art of Stress-Free Productivity (Allen, 2001) is one of the most pop-
ular examples on how pim could actually inspire a large group of people.
David Allen’s company is very successful giving talks and mentoring man-
agers to optimize their pim workflows. A very thorough book on pim is
Keeping Found Things Found: The Study and Practice of Personal Information
Management by William Jones. Unlike typical specialist literature, it also
addresses the average user. Although it is well backed up with many im-
portant references to scientific literature, it is definitely recommendable to
non-researchers looking for answers.

Web As with other subjects, the world wide web is an overwhelming
source of information also on pim. Inbox Zero 12 is a method to cope with
email overload 13. As part of the Keeping Found Things Found project, Tales

11. Chapter 5 on managing todos advertises a commercial web service for managing tasks
using email. I would have proposed something independent. I totally agree with almost
anything else in this book.

12. http://inboxzero.com/ – retrieved on 2012-08-09.
13. The common problem of email overload is described in Whittaker and Sidner (1996)

and many other studies and books.

72

http://inboxzero.com/

3.3 Tools and Development

of PIM 14 started a discussion on pim topics in a forum. Once sensitized,
users really like to share their experiences on their own pim. Many blogs
relate to this topic and movements like Quantified Self 15 are more or less
part of pim. And there will be much more to come in the future.

People As mentioned above, many people like to share their experiences
with others. Peres et al. (2004) showed that social factors are the most im-
portant aspect when it comes to learning how to use a computer efficiently.
Working on the same computer with another user who is able to do things
more efficiently, is a very good method to propagate pim knowledge. Al-
most everybody knows a co-worker in the office who is the expert to ask.
The same holds for pim methods.

Is seems to be the case that awareness for pim related issues still has to
be created. As mentioned in Section 3.2.1, there is a huge amount of lost
productivity which could be reduced.

3.3 Tools and Development

Missing knowledge or techniques are not always the reason for subopti-
mal pim tools. There is this old problem of “reinventing the wheel”. Many
good ideas or small notions were part of research projects that were dis-
continued or just not well referenced. Already developed progress has been
forgotten. Or, perhaps, the research software never left its prototype status,
not allowing its potential to be developed.

3.3.1 Missing Availability of Advanced Management
Solutions

Lansdale (1988, p.63) discusses how to get good solutions for managing
information:

14. http://talesofpim.org/ – retrieved on 2012-08-09.
15. http://quantifiedself.com/ – retrieved on 2012-08-09.

73

http://talesofpim.org/
http://quantifiedself.com/

3 Challenges

} How then do we proceed to something different and more
functional? It must be by an iterative process rather than purely
by the adoption of some new scheme or technology. It is true
that new possibilities of the technology will be recognised: some
of these, by natural selection, will succeed and some will not.
These will lead to methods which the user will have available
for all aspects of his job, including information management.
From the other side, clear user needs (such as reminders, for ex-
ample) will emerge from behavioural studies of office activities
for which suitable interface devices will be envisaged. Again,
some of these will succeed and some will not. Thus far, this is
how the development has been driven; by technological devel-
opment and by the automation of existing strategies. [Emphasis
by Karl Voit].

However, in the year 1988 when those lines were written, a completely
different ecosystem existed. Many different companies were competing for
a diverse market with no clear leader and no clear standards. A variety of
operating systems, each with several mostly data-incompatible applications
were struggling to find their customers.

Since then, the computer landscape has changed dramatically: the Mi-
crosoft Windows platform gained dominance and Microsoft Office soft-
ware products form a some kind of industry-wide standard. For almost all
requirements, there are few market leaders with “standard software” prod-
ucts. The feature-sets of those products define the set of possibilities for
their customers. If a market-leader does not implement a certain method
or feature in its software product, this method or feature can not be used
by the huge majority of users.

This is not a “survival of the fittest” situation at all.

Even worse, a market leader having a large share of users has little incentive
to change products in a more than an iterative way. Backward-compatibility
is more important than innovation.

Where does innovation come from instead? Academic research has the po-
tential to develop methods and solutions which do not necessarily promise

74

3.3 Tools and Development

financial profit. To a certain degree, these research software prototypes do
not even have to be compatible with existing applications. Chapter 2 lists
many research projects that developed impressive and innovative things.
Unfortunately, the majority of these solutions (fifteen) were never pub-
lished for public download and usage. And of the few that went public
at all, three are discontinued/outdated and one is available only as a bi-
nary. After a research project has ended, source code and knowledge often
becomes lost.

Developing software products for the masses requires a different kind of
development process and maintenance than developing research proto-
types that just have to run long enough to return research results.

The open source software model has come far. Software like the Linux ker-
nel, the gnu project, the Samba server, the Apache project, and so forth are
modern, robust, and became the driving force behind the Internet. 16 Not
only free “versions” of commercial software were developed by this com-
munity. It is also a playground for many innovative projects. One promis-
ing project is Nepomuk 17, the Semantic Desktop in kde. Among the many
users of the kde desktop, only a small minority embraces the advanced
possibilities of having software tools for managing data in a semantically
enriched way.

Given the fact that there exists a new software product that implements a
new and innovative method for information management that helps users,
there are other circumstances that lead to user acceptance. In Voit, An-
drews, and Slany (2009) the authors summarize a set of issues that are
often neglected and lead to rejection. There are many ways to do it wrong
and so few to do it right.

The basic need of users to enhance their pim practice is unquestioned, as
the quote on page 18 confirms.

16. Most email servers, web servers and cloud based services use open source software.
17. http://nepomuk.kde.org/ – retrieved on 2012-07-18.

75

http://nepomuk.kde.org/

3 Challenges

3.3.2 Degree of Maturity of (Tagging) Interfaces

I have seen many studies that did not seem to recognize the fact that com-
parative studies should compare tools which have a similar level of matu-
rity.

For example, tagging interfaces rely very much on the way they are im-
plemented. The purpose of a tagging interface is not only to provide the
ability to add tags to items. Given that the user of such an interface has to
invest effort to add metadata, the interface has to make sure that this effort
is kept to an absolute minimum.

Completion of already known tags and a tag recommending system are
very basic features supporting the process of adding metadata. A tagging
interface without tag completion is like a file browser where the user has
to actually type in the name of each folder to open.

A number of comparative studies, where the level of maturity was not
comparable, is discussed in detail in Voit, Andrews, and Slany (2012a).

3.4 Research Topics

In the last decade, the focus of many studies and researchers was on search-
based information retrieval. The increasing performance of average desk-
top computers allowed reasonable use of desktop search engines. It was
tempting to believe that search will replace navigation in pim as long as the
search engine showed optimized result sets.

If such a perfect search engine existed, many problems related to pim would
be gone without changing much of the rest of current systems. All known
disadvantages of the strict hierarchy of folders, of dead-end navigation
processes, of the huge amount of items to manage could be ignored: the
perfect search engine would solve recall problems independently of the
rest.

Unfortunately, this is not the case.

76

3.4 Research Topics

We have to also consider changes in major parts of current systems in order
to enhance pim more. This is about choosing a research focus.

3.4.1 Desktop Metaphor as a Limiting Factor

The desktop metaphor was an ingenious trick in the 1970s. As described
on page 1, it was a clever way to transfer knowledge from a real world
scenario to the new virtual world of computer interfaces. With the desktop
metaphor it was possible for non-tech-savvy persons to use this kind of
technology. This metaphor has a clear advantage in terms of learning.

Meanwhile, the world has changed much. In many countries, younger
generations have grown up with technology. A computer is not an un-
common thing anymore. Interacting with basic user interface elements is
wide-spread knowledge. Many children are more capable of using modern
technology than their parents.

The desktop metaphor is still around, but its ability to teach us how to
use a computer is not necessary any more. For example, web pages do not
follow this metaphor at all. Hyperlinks offer access to information from an
arbitrary number of pages. Web-based shops present a single item in all
relevant categories, not just one.

Since the desktop metaphor is based on real world experience, one key
element is that one thing has its one location. Our file systems were designed
according to this scheme: one file has exactly one storage location within
the file system.

Consider the following scenario: a user has organized her own files in a
hierarchy of folders where one sub-hierarchy consists of one folder for each
contact she knows. Another sub-hierarchy holds one folder for each project
she is currently working on. She now receives a file with her email system
which holds information about a co-worker Bob’s idea about a specific
project. This situation is illustrated in Figure 3.1.

On the one hand, it is perfectly reasonable to file this information in the
folder related to Bob since he is the author of this file. On the other hand
it is also perfectly reasonable to file this information in the folder related

77

3 Challenges

people

Alex

projects

Proj X

Bobs
ideas
about
MyProject

Bob

MyProject
?

Figure 3.1: An important problem of current file management: strict hierarchies of folders
allow only one destination folder, files can not be stored in more than one
folder. The user has to apply workarounds: (a) put the file in one folder and
use links in other folders, (b) put copies of the file in multiple folders, or (c)
maintain an implicit prioritized cognitive model of the folder hierarchy.

to the project since its content is about the project itself. Unfortunately,
modern file systems do not allow one file being in two folders at the same
time.

People around the world are facing this problem multiple times a day. We
all use common workarounds to cope with this dilemma:

• creating links to the file in each folder that is also relevant, or
• storing copies of the file in each relevant folder, or
• deciding, which folder is most suitable and sticking to a single desti-

nation folder.

78

3.4 Research Topics

Links The problem with links is that most implementations are not de-
signed in a way that the link keeps working when the original item is
moved or renamed. Those broken or dangling links result in disappoint-
ing user experiences. Another issue with links is that users simply do not
use them (Gonçalves and Jorge, 2003). This is probably because users are
not aware of being able to link files. Or, perhaps, users are disappointed
because of broken links in their previous experience.

Multiple copies Users filing information into any folder which may be
relevant, results in wasted storage space. Each additional copy requires as
much storage capacity as the original file. The problem of inconsistency
is even more severe. When the user modifies one copy the others do not
get modified as well. The content of the files diverges and the user might
forget which copy is the most current. On shared network drives and hard
disks of employees, studies 18 estimate the percentage of avoidable storage
space due to duplication of information at roughly 10–30 percent of the
total storage space. This is a huge amount of wasted capacity. The negative
side effects from inconsistent updates result in additional hidden costs due
to inefficient work and the use of outdated information. There are many
business models that try to ameliorate this problem. The current state of
research in deduplication methods is described by Malhotra, Sarode, and
Kamble (2012).

Cognitive model Most users decide which folder to choose using the pri-
orities of their implicit cognitive model. Some users might think that the
project folder is more important than the alternative folders. Some users
might prefer the project folder of the contact. Those decisions are made
having a certain state of the cognitive model and within a specific situation
the person is in. When the user wants to re-find the information, her cogni-
tive model might have changed in the meantime. And her situation while
accessing the information most likely changed as well. Sometimes we won-

18. http://hubdesigns.files.wordpress.com/2010/04/hidden-costs-of-duplicate-customer-data.
pdf – retrieved on 2012-07-18.

79

http://hubdesigns.files.wordpress.com/2010/04/hidden-costs-of-duplicate-customer-data.pdf
http://hubdesigns.files.wordpress.com/2010/04/hidden-costs-of-duplicate-customer-data.pdf

3 Challenges

Figure 3.2: A humorous summary of the impossibility of finding the right organiza-
tion method (alt-text: “Lifehacking!”). [Source: http://xkcd.com/1077/ – re-
trieved on 2012-08-20].

der why we filed an information in this or that folder 19. This demonstrates
the drawback of this kind of “filing workaround”: re-finding is difficult
when our models and situations change. The “mental map” of our folder
hierarchy keeps changing, but the files stay in the same folders where they
were originally filed.

In the example with the filing dilemma mentioned above, the desktop
metaphor is actually a limiting factor that results in poor system support
to the user. In this case, the desktop metaphor is similar to crutches: an
essential need for the technologically handicapped, but a handicap for the
technologically healthy.

A computer interface without these limitations could assist the user in
many possible ways. The virtual computer world could benefit from al-
lowing each thing its places instead of each thing at a single place 20. We
should think about alternative interfaces that ignore the limitations of the

19. Such incidents were mentioned, for example, in Dumais et al. (2003, p. 78) or Boardman
and Sasse (2004, p. 587)

20. This is also a fundamental idea in Weinberger (2007).

80

http://xkcd.com/1077/

3.4 Research Topics

desktop metaphor in order to provide better interfaces which assist users
in their routine work.

In Barreau and Nardi (1995) the authors presented two studies where they
took a closer look at how users organized information on different operat-
ing systems 21. By observing users, interviewing them and asking them to
give a tour of their system, the authors found out several things:

} [W]e found that users prefer filing by location because it aids in
helping them find what they need as well as serving a crucial re-
minding function. We found that users do not expend great energy
on archiving because old information is generally not useful in-
formation. We found that users give up on elaborate filing systems
because in the end they do not yield enough value. Users file
information not according to systems of keywords or carefully archi-
tected logical schemes, but according to the dictates and vagaries
of the kind of work they are doing and the type of information
they are dealing with. [Emphasis by Karl Voit].

Fertig, Freeman, and Gelernter (1996) came to the conclusion that the desk-
top metaphor “favors certain types of interaction over others” and re-
sponded to the paper from the previous paragraph:

} [W]e believe that Barreau and Nardi’s findings are mostly ar-
tifacts of the desktop and file&folder metaphor. The desktop
metaphor was created on analogy to our paper-based world.
Our computer-based systems can do better. There are many emerg-
ing systems that go beyond our traditional file systems and user
interfaces that are ripe for study. [Emphasis by Karl Voit].

Many other research papers emphasize the fact that the desktop metaphor
should be considered obsolete: Lansdale (1988) mentioned that “[i]t is im-
portant to recognise that the design philosophy of these [desktop metaphor
based] machines is not principally to support information management,
but to make the machines easy to use.” And: “in areas of information man-
agement which involve longer term storage and retrieval, their facilities do

21. The operating systems were Microsoft dos, Microsoft Windows, ibm os/2, and Apple
Macintosh.

81

3 Challenges

not provide added value.” Perugini (2009) emphasized the fact that access-
ing information over a variety of paths is an important notion. Houben
(2011) took a closer look at a post-desktop-metaphor world from the per-
spective of activity theory. Indeed, numerous books and studies came to
the conclusion that the desktop metaphor, with its restricting properties,
should be subject of change: Nielsen (1996); Shirky (2005); Weinberger
(2007); Seltzer and Murphy (2009); and many others.

It is now obvious that the advantages of the desktop metaphor no longer
dominate its negative effects. The desktop metaphor is a relict of accus-
tomed limitations from the physical world. It has well earned a life in re-
tirement. Let’s focus on new possibilities.

3.4.2 Neglecting the Importance of Navigation

Research in information retrieval has focused more or less only on web
navigation or search. Only a small fraction of studies relates to local folder
navigation. Yet, this is exactly what many millions of users are doing many
times a day: looking up files and folders on their computer. Even worse,
this process is not optimized at all.

Many studies provide impressive evidence that, for users, navigation is
more important than search for (local) information retrieval. It is worth
noting that most of those studies were trying to test and improve search,
not navigation.

} Browsing was a strategy used frequently to retrieve files. It
was the observed method of choice among the subjects when
looking for old files, but it was used just as frequently to retrieve
documents from a current list. (Barreau, 1995)

} In any case, our participants most commonly wanted to browse
their personal photos by event, rather than querying them based
on more specific properties. (Rodden and Wood, 2003)

82

3.4 Research Topics

} [W]e observed that even when people could use their contex-
tual information to teleport directly to their information target,
they often preferred to orienteer to the information instead.

[. . .]
These possible explanations suggest that future systems should
deeply consider orienteering or other approaches to help people
use contextual data, perhaps by prompting them with contex-
tual information instead of requiring them to fully specify all of
this information at query time. (Alvarado et al., 2003)

} Participants reported a strong preference for browsing over
search in all three tools. (Boardman and Sasse, 2004, p. 587)

} We found that often keyword-based search engines were not
used when searching, and when they were used, it was usually
part of an orienteering strategy. The observed advantages of ori-
enteering include the fact that orienteering allowed participants
to not fully specify their information need up front and enabled
them to take advantage of the large amount of contextual in-
formation they knew about their information target. We have
suggested that search tools should support this orienteering be-
havior. (Teevan et al., 2004)

} The standard method of document retrieval from personal
work space for these managers is the same as that used 10 years
ago: by browsing an ordered list and selecting the desired item.

[. . .]
All of the managers use search engines such as Google to find

things in shared spaces, including the Internet, but they rarely
employ a search engine to find information in their personal
work space. One of the 4 said that he occasionally uses the find
feature within his e-mail software to separate a group of mes-
sages from a person or on a topic, but not often. (Barreau, 2008)

83

3 Challenges

} Our results show preference for navigation over search re-
gardless of the use of improved desktop search engines.

[. . .]
As navigation is the preferred retrieval method used by mil-

lions of users many times a day, it needs more research and de-
velopment than is currently focused on it. Shortening navigation
time, even by a second, could accumulate to several working
years per day for the entire population. (Bergman et al., 2008)

The need for research work related to navigation is omnipresent in many
research results. While search is an important part of our pim portfolio,
navigation is used much more often and its tools did not evolve to the
same extent in the last fifty years.

3.4.3 Local File Management Not Elaborate Enough

The previous section described the importance of navigation. This section
emphasizes the fact that the current state of local file system navigation
is not elaborate enough, leaving much room for improvement. A small
selection of strategies and approaches to overcome this limitation is men-
tioned.

The most important drawback of strict hierarchies is probably demon-
strated by Furnas, Landauer, et al. (1987). They studied the Vocabulary Prob-
lem by letting people name things and compare their choices. The results
showed that “[i]n every case two people favored the same term with prob-
ability < 0.20”. Their conclusion was that “[m]any, many alternative access
words are needed for users to get what they want from large and complex
systems”.

Although this study was about finding terms where different users agree
upon, it is likely the case, that one single user might face similar problems
when there is a large time gap between naming an item and re-finding it.
If this holds true, a user faces a huge problem when using a hierarchical
structure where an item has only one single location and a single name.
Lansdale (1988) confirmed this assumption:

84

3.4 Research Topics

} The recall process is deficient because, as we have seen, the
users’ ability to categorise documents with the appropriate file-
names, and their ability to remember those filenames, is limited.

Section 2.1.3 summarized the work of Lansdale (1988) where the author
made the point, that a strict hierarchy of categories has many issues.

Shirky (2005) wrote a very good essay about the need of a paradigm shift
away from single classification ontologies. Using great examples, he made
his point very clear. In relation to file systems and hierarchy he wrote:

} Browse versus search is a radical increase in the trust we put
in link infrastructure, and in the degree of power derived from
that link structure. Browse says the people making the ontol-
ogy, the people doing the categorization, have the responsibility
to organize the world in advance. Given this requirement, the
views of the catalogers necessarily override the user’s needs and
the user’s view of the world. If you want something that hasn’t
been categorized in the way you think about it, you’re out of
luck.

The search paradigm says the reverse. It says nobody gets to
tell you in advance what it is you need. Search says that, at
the moment that you are looking for it, we will do our best to
service it based on this link structure, because we believe we can
build a world where we don’t need the hierarchy to coexist with
the link structure.

Shirky, however, ignores the fact that, for personal file systems, there might
be a valid alternative representation which supports navigation. This alter-
native system must not be static. Simplifying the problem to the point that
only search is the answer does not cover the whole story.

Similar ideas are described in the book Everything Is Miscellaneous: The
Power of the New Digital Disorder (Weinberger, 2007). Weinberger analyzes
the problem of single structures and its background in history. He proposes
the “third order of order” which basically means no fixed order at all. In
fact, with digital information, the order of representation should be derived
upon access, with regard to the requirements of the information retrieval

85

3 Challenges

purpose. The content is indexed and used as metadata for querying as well.
Organization is deferred until the point of use.

Orlowski (2002) describes some aspects the developers of the BeOS file
system were trying to solve. They designed a strict hierarchy of folders as
only one representation of file system content. Multiple representations of
the same set of stored items could be generated.

Rodden and Leggett (2010) described an interesting approach of Google
Gmail to combine aspects of search, tags (labels), and folders in the same
interface. These methods allowed multi-classification for users who care
about it and conventional folders for users who wanted to keep on using
the well-known hierarchy metaphor. Another product from Google, Google
Docs 22 also allowed enhanced multi-classification. However, with the intro-
duction of Google Drive 23, the feature of assigning multiple labels to items
was removed again 24.

Chapter 2 contains descriptions of many research tools that implemented
a variety of possible solutions, including the following:

Temporal Views Visualizing items in a temporal view was implemented
in tools like Lifestreams (Section 2.2.3), TimeScape (Section 2.2.4), or sis

(Section 2.2.9).

Links The use of hyperlinks and associative paths is a central idea be-
hind tools like Presto (Section 2.2.6), Haystack (Section 2.2.7), Planz (Sec-
tion 2.2.18), and LiFiDeA (Section 2.2.19).

22. http://docs.google.com, was replaced by its successor Google Drive https://drive.

google.com in mid 2012.
23. Google Drive resembles an online data storage like the popular Dropbox service http:

//dropbox.com – retrieved on 2012-08-10.
24. I personally think the reason was that Google Drive was extended with direct synchro-

nization to users’ desktop computers. And those desktop computers are using tradi-
tional strict hierarchical file systems.

86

http://docs.google.com
https://drive.google.com
https://drive.google.com
http://dropbox.com
http://dropbox.com

3.5 Research Methods

Unified Hierarchies Boardman tried to at least provide a user experience
consistent with strict hierarchies by unifying them with WorkspaceMirror
(Section 2.2.8).

Facets A promising method to enhance interfaces for re-finding are inter-
faces using facets. Some approaches mentioned were Phlat (Section 2.2.10),
Feldspar (Section 2.2.17) (at least to some extent), Flamenco, mspace, and
Querium (all in Section 2.2.20).

Semantics Although not part of common computer desktops yet, seman-
tics have a great potential. With new file systems, the Semantic File System
(Section 2.2.13), SemFS (Section 2.2.14), TagFS (Section 2.2.15), and hFAD
(Section 2.2.16) all provided a new way of managing files. The Nepomuk 25

project added semantics to the kde
26 desktop, a popular gnu/Linux desk-

top environment. Many researchers are working in the field of semantics
which might be applied to file systems (Faubel and Kuschel, 2008). Com-
bining navigation and semantics is also an interesting topic (Solskinnsbakk
and Gulla, 2010; Helic et al., 2010; Helic et al., 2011; J. Kim et al., 2010).

3.5 Research Methods

Researchers do not only choose appropriate research topics. They also
choose research methods to investigate and evaluate their findings. Re-
search methodology is a very sensitive subject. Certain aspects are im-
portant influence factors for the outcome. This section lists two examples,
where I believe that a change of mind might bring better research results
for pim.

25. http://nepomuk.kde.org/ – retrieved on 2012-08-10.
26. http://www.kde.org/ – retrieved on 2012-08-10.

87

http://nepomuk.kde.org/
http://www.kde.org/

3 Challenges

3.5.1 Observation is Not Always Enough

Lansdale (1988) wrote that “underlying psychology of information man-
agement cannot be directly inferred from users’ behavior in offices”. The
behavior of users doing their workflows on their systems is a result of the
tools which may or may not support certain behavior under their current
circumstances. When a user study reveals that most users use icon interac-
tion to save the current document, any conclusion that icon interaction is
“better” than interaction with keyboard shortcuts or menu entries is not a
valid one. 27 It still might be the case, but not because of this observation.

In my opinion, some pim studies made observations and then drew pos-
sible unwanted conclusions about what users need in order to achieve the
highest level of efficiency or the best user experience. This was based solely
on users’ behavior with their current software environment.

Observations can only reveal how users use their current system. This does
not necessarily mean that there are not other circumstances, tools, or meth-
ods which might lead to better user experience or higher efficiency. Of
course, studies based on observations are very important for optimizing
current tools! However, the reasoning from participants showing certain
behavioral patterns to “this pattern is desirable” is not valid (Lansdale,
1988).

Similarly, comparative studies can only reveal differences of the implemen-
tations which were tested. Nothing more, nothing less. Different tools im-
plementing the same methods do not necessarily lead to the same results.
Participants are not able to differentiate between implementation and me-
thodical issues. They only use the system as it is.

It is crucial not to draw conclusions which exceed the scope of a study.

27. Lane et al. (2005) covers the topic of the efficiency of icon interaction, menu selection,
and keyboard shortcuts.

88

3.5 Research Methods

3.5.2 Long-Term Versus Short-Term

Formal experiments and thinking aloud tests are very important instru-
ments for pim research. Although, they do have drawbacks. Laboratory
experiments with test persons test user behavior in an artificial environ-
ment for a very short period of time. Extrapolating results might lead to
false assumptions.

If a test person works on a new system in a lab experiment, it is not the
general behavior which is observed. It reveals only the first impression and
the behavior within the first minutes of using the software implementation
provided.

This thesis cites a number or long-term studies like: Gibson, Miller, and
Long (1998); Boardman and Sasse (2004); Dumais et al. (2003); Furnas, Fake,
et al. (2006); Cutrell et al. (2006); Sauermann and Heim (2008); Cho, S. Kim,
and Lee (2009); W. P. Jones, Hou, et al. (2010); Whittaker, Matthews, et al.
(2011). Such long-term studies have drawbacks as well. Typically, condi-
tions can not be controlled in a strict way. Thus, observations of behavior
can not be compared among participants to the same extent as in labora-
tory experiments.

Nevertheless, field studies are very important to let participants interact
with an interface over a longer period of time. Most likely, their behav-
ior changes and adapts over days, weeks, or months. This reveals further
observations which address the long-term advantages or disadvantages.

It is easier to conduct a laboratory experiment than a (possibly larger) field
study. Both kinds of experiments have their specific qualities. In my opin-
ion, for pim research, many long-term effects are very important. Thus,
researchers should run field studies in addition to laboratory experiments.
Comparing short-term experimental results with long-term field study re-
sults leads to a much more refined picture of the effects of pim tools on
users.

89

3 Challenges

3.5.3 Using Only Iterative Processes

As stated in the previous section, many pim studies observe the current be-
havior of users. Those results lead to better versions of the current methods
or tools. This way, the tools and methods improve with time.

However, as new ideas are developed and new research prototypes are
created, they are not as mature as the solutions which have been opti-
mized for a certain period of time. Comparative studies between common,
well-established tools and research prototypes using a new paradigm are a
double-edged sword. On the one hand, misguiding ideas have to be filtered
out in direct comparison. On the other hand, however, those prototypes
have a strong drawback.

According to the Monte-Carlo optimization method (K. Binder, 1986), find-
ing the global optimum requires the combination of proposing totally new
approaches and successively optimizing this new approach. Only after a
certain number of iterations, the new attempt can be proven to be a better
solution or not. Figure 3.3 (page 91) and its caption visualizes this issue
using a simplified example.

3.6 Research Questions

Based on selected challenges in this chapter, the research questions which
are addressed in this thesis are:

3.6.1 How Can Navigational Re-finding Be Improved?

Navigational information re-finding is important and deserves more re-
search focus. The current situation is that most people use the default file
system browser of their operating system: Microsoft Windows Explorer,
Apple os x Finder, or one of several file browsers for gnu/Linux desktop
environments.

90

3.6 Research Questions

1©

2©

3©
5©

6©

7©

8©

9©

4©

a©

b©

efficiency

time

Figure 3.3: A qualitative and simplified illustration of the tool optimization process. The x-
axis symbolizes time, the y-axis is a hypothetical measure of efficiency which
is made possible by the tool. 1© to 9© symbolize state-of-the-art studies which
define the efficiency-factor of the tool. The arrows give an impression of how
much improvement could be accomplished on the tool which was subject of
the study.
1© is a tool – the first in its row of studies – which shows room for improve-

ment in a positive direction. An improved version of this tool is evaluated in
2©. As the tool is improved much further, studies 3© to 5© still show possible

optimizations but on a much higher level. The tool seems to be pretty much
optimized, big steps of improvement might never happen again. The tool opti-
mization process has become stuck near a local optimum.
Then, somebody starts testing a totally fresh approach. Its first study 6© reveals
a huge drop a© of efficiency, but it also shows large room for improvements.
As this new tool gets improved and studies 7© and 8© get promising results,
the new tool still has a lower efficiency value than 5©. However, starting with
9©, the new tool outperforms the old one with b©. It still might not be the global

optimum but its local optimum is at least significantly “higher” than 5©.
The point is that this improvement b© of the efficiency measure would have
never happened if no tool had been proposed which seemed to perform worse
compared to the established one. It also needed several iterations and studies
to provide as much efficiency as 5©. With luck, this new tool evolves posi-
tively such that it outperforms 5© after a certain period of time. Sometimes it
is worth trying something completely new. Evaluating only the tools currently
in use (like 1© to 5©) may not lead to finding the global optimum.

91

3 Challenges

3.6.2 How to Organize Information In a Better Way?

The classic hierarchy of folders is a limiting factor. A new method using
multi-classification, combined with current operating systems and end user
environments, could lead to a better pim experience.

3.6.3 How to Evaluate Such a Method?

Evaluating pim tools is a sensitive subject. Creating comparative situations
for participants is hard. There are also many evaluation methods to choose
from. The derived research prototype has to be matched by suitable evalu-
ation methods in order to obtain meaningful results.

92

I am just a new boy,
Stranger in this town.
Where are all the good times?
Who’s gonna show this stranger around?

Young Lust
Pink Floyd

4 The TagTrees Method

The previous chapter listed many pim challenges. In this chapter, some
identified challenges will be addressed by designing a new method for
storing and re-finding information. It describes the starting point of this
new approach. In accordance with Figure 3.3 (page 91), this new method
will be subject to various iterations and optimizations as well. With some
luck, this method could be part of many future pim systems.

4.1 Motivation

Since methods and tools of current computer systems do not support the
user in an optimized way, a completely new method might be promising.
Implementing and evaluating this new method could result in interesting
findings. The task of designing a better method for pim is hard. Lansdale
(1988) described it as follows:

} But how do we proceed? How do we design for the future?
Ultimately, what we need is to turn this descriptive information
into a specification for future systems.

93

4 The TagTrees Method

The problem with this is that it is rather like being asked
to imagine a colour one has never seen. We have the mental
apparatus to see things in terms of how they are, or how they
have been, but not how they will be.

It is clear that a single new method can not resemble the best pim user
experience for all requirements and eternity. However, starting from the
insights of previous research from Chapter 2, and having in mind the chal-
lenges from Chapter 3, each new method does have the chance to be the
next step towards a better solution. Each new step brings new insight. And
step by step, with each new method developed and evaluated, the pim user
experience becomes further optimized.

So how should a possible next step look like? What do we want to try out
next?

From the considerations in the previous chapters, it seems to be the case
that following factors need to be addressed in a better way:

• Navigation.
• Multiple paths to one specific item.
• Multi-classification.
• The role of context.
• Associations.

4.2 TagTrees

The use of tagging is a promising approach for multi-classification. It is
widely adopted in many web-based services, particularly social tagging.
Not only-social tagging, even a single-user systems can benefit from tag-
ging.

Tagging systems usually use tags for some kind of search-based re-finding
interface. If the user enters a tag, the items shown are filtered down to items
which were tagged with this selected tag. Navigation structures using tags

94

4.2 TagTrees

are rarely used. Some research tools 1, however, used tags for the purpose
of navigation. Inspired by those projects, I derived the following method.

When an item I is added into the system, the user u assigns a set of tags
t1, . . . , tn to this item:

I u←−− (t1, . . . , tn) (4.1)

Using the tags t1, . . . , tn, navigational structures are created by the tool.
These navigational structures are created to enable the user to navigate
to the item using every possible (sub)permutation of its tags. The term
“(sub)permutation” here is used in a simplified way. To be precise, this is
defined as “the set of the tag-permutations of the number of tags without
repetition”.

With n as the number of assigned tags to an item I , there are p(n) possible
paths referring to the item from within the TagTrees:

p(n) =
n

∑
i=1

P(n, i) (4.2)

In general, P(n, k) is defined as the k-permutations of n without repeti-
tion 2:

P(n, k) =
n!

(n− k)!
(4.3)

This results in the combined formula for the number of p(n) possible
paths:

p(n) =
n

∑
i=1

n!
(n− i)!

(4.4)

The correlation between the number of tags n associated to an item I and
its resulting paths p(n) is exponential as illustrated in Table 4.1.

1. For example TagFS (see Section 2.2.15), hFAD (see Section 2.2.16, or SemFS (see Sec-
tion 2.2.14).

2. See Kreyszig (1993, p. 1161, Theorem 3).

95

4 The TagTrees Method

Number of tags n 1 2 3 4 5 6 7 8 . . .
Number of paths p(n) 1 4 15 64 325 1,956 13,699 109,600 . . .

Table 4.1: Illustration of the growth of the number of paths according to the number of
tags used.

For example, if an item was tagged with three tags (n = 3), each of the
following fifteen paths 3 results in a successful retrieval process: t1, t2, t3,
t1/t2, t1/t3, t2/t1, t2/t3, t3/t1, t3/t2, t1/t2/t3, t1/t3/t2, t2/t1/t3, t2/t3/t1,
t3/t1/t2, and t3/t2/t1.

Under the assumption that the user does not recall tags which are not
associated with the item, she should be able to re-access the item. Each path
within the TagTrees can be interpreted as an and-relation of the related
tags forming an implicit filter query. The deeper a user navigates into the
TagTrees structure, the narrower this implicit query gets, and the fewer
matching items are listed. Within the TagTrees structure there is not a single
path that contains no item at all.

Some aspects of this method were influenced by ideas from Bloehdorn et al.
(2006) and Mohan, Raghuraman, and Siromoney (2006), although TagTrees
does not have the same problems with widowed items or a missing delete
method. The TagTrees method was initially published in Voit, Andrews,
and Slany (2011).

4.3 TagTrees and File Management

The TagTrees method can be applied to any kind of information man-
agement. In order to demonstrate, discuss, implement, and evaluate this
method, we will focus hereafter on its application for filing and re-finding files on
a local file system for a single user.

Figure 3.1 (page 78) visualizes the dilemma of multiple folders matching
an item. Using TagTrees this problem can be solved: A user storing an item

3. Here, the posix path separator is used: “/” (forward-slash).

96

4.3 TagTrees and File Management

navigation

Bo
b

M
yP

roject

storage

Bob

MyProject

MyProject

Bob

Figure 4.1: The TagTree structure of an example file: After storing a file into the storage
folder, a user tags it using the two tags “Bob” and “MyProject”. The software
then generates the TagTree structure below the navigation folder. Each (sub-)
permutation of tags leads to a folder which holds a link to the original file in
the storage folder. The user is able to navigate to this item in many ways. The
TagTrees are maintained automatically when the user renames or deletes items
in the storage folder.

can assign multiple tags to this item. In a dedicated navigational struc-
ture, those tags form an automatically generated and updated folder struc-
ture. This structure consists of folders resembling every (sub)permutation
of tags. In each of those folders, a link to the original item is created. The
name of this link reflects the original item name.

Figure 4.1 shows an example where the root of the TagTree navigational
structure is named navigation. Two tags were applied to an item stored in
storage resulting in four additional navigation paths.

To access an item stored with the TagTrees method, a user is able to navi-
gate any combination of tags. This enables associative navigation depend-
ing on the current context of the user.

97

4 The TagTrees Method

navigation

storage

Bob

MyProject

MyProject

Bob

1©
2©

3©

Figure 4.2: Three different examples on how to navigate to an item: Depending on the
cognitive state of the user, she is able to navigate many different paths to one
single item. She can 1© access the item directly in the storage folder when she
remembers the item name. If her context is based on the person Bob, she might
prefer accessing the item using the tag related to Bob 2©. In the context of the
project MyProject, she probably wants to navigate to the item using its project
tag 3©.

Figure 4.2 illustrates a small example. The user is able to access the orig-
inal item directly if she remembers the item name that is stored within
the storage folder. This is also the recommended location that should be
included in any kind of indexing tool such as desktop search engines 4.

Let us assume that the store in the example belongs to Bob’s supervisor,
who is preparing for an employee review meeting with him. Most probably
she will start her navigation process by opening the tag-folder Bob. In this
folder, she recognizes the tag-folder of MyProject. After changing to this
folder, she notices the file where Bob summarized some thoughts on his
colleagues’ project called MyProject. She is able to retrieve his thoughts

4. The TagTrees sub-hierarchy should be excluded from backup and indexing.

98

4.4 TagTrees Addressing Previous Research

and this is a valuable input to the appraisal interview later on.

Another context for the same TagTree structure: the owner of the very same
store is not Bob’s supervisor. For the next example, the owner of the store
is the project manager of MyProject, preparing for a report on this project.
This time, she most probably starts by selecting the MyProject tag-folder
because this is the focus of her task for now. Within the MyProject folder,
the tag-folder Bob gets her attention. By opening this folder she also gets to
Bob’s ideas about MyProject which leads to useful input for the report.

Those two scenarios show the usefulness of having different navigational
paths to the same item. Different context situations lead to different folder
selection. As long as the navigational path contains tags from a specific
item, the item is found.

The benefit of TagTrees becomes even more clear with one additional no-
tion. Let us assume that Bob is not directly assigned to the MyProject team.
Nevertheless, he had some ideas about his colleagues’ project and wrote
them down. And now reconsider the two scenarios once again. In a strict
hierarchy of folders, this file would most probably not have appeared in
a navigational process at all. TagTrees support serendipity that would not
have occurred with traditional methods.

4.4 TagTrees Addressing Previous Research

In Chapter 2, some papers contained suggestions which might enhance
future information management systems. This section refers to some of
those suggestions to underline the grounding of the TagTrees method in
previous research.

Cutrell et al. (2006, pp. 9, 10) mentioned critical “influence points”: “for
files it is during the ‘Save dialog’ when users are thinking about how the
document will be recovered later.” This emphasizes the importance of im-
plementing the tagging process correctly when a new item is filed.

99

4 The TagTrees Method

Among other conclusions, Malone (1983) mentioned three things to “[make]
the mechanical process of creating multileveled classification systems very
easy”:

1. Multiple classification.
2. Deferred classification.
3. Automatic classification.

Multiple classification 5 is made possible by applying tags instead of stor-
age paths within a strict hierarchy. The possibility to defer the classification
of an item could be solved by not forcing the user to tag an item at any cer-
tain moment. To support automatic classification, an implementation can
make use of implicit information such as date of storage, item size, and
item type. Additionally, a tag recommendation system is able to support
users in the process of applying tags.

Lansdale (1988) contains several notions which I addressed by TagTrees.
For example, the following quote points out the importance of context:

} [A]t the time of recall, the context of what we are thinking
about provides a prompt for memory. If this context matches
the way in which the information was initially interpreted, then
recall is successful, but if it does not, then recall fails.

[. . .]
[M]ost of what people remember about a particular document

is partial: they remember some of what was associated, but not
all. Systems which require complete accuracy (memory for all
three elements) therefore fail.

For re-accessing an item within TagTrees, a user does not have to remember
the order of the tags, or the complete set of tags.

However, associative navigation is not only mentioned in Lansdale (1988).
Many other papers address this need. J. Kim (2011) evaluated an associative
browsing model (see Section 2.2.19) and showed that “associative browsing
provides an effective and efficient alternative when keyword search fails.”

5. Multiple classification is an important issue in Malone (1983); Lansdale (1988); Nielsen
(1996); Quan et al. (2003); Shirky (2005); Weinberger (2007); Perugini (2009) and many
more.

100

4.5 The Effort of the Storage Process

In Gifford et al. (1991) the authors produced a semantic file system which
provided associative navigation. Collins (2011) developed an interface for
tabletops, which implemented associative navigation among other things.
Elsweiler (2007) emphasized the importance of these issues for pim as well.
In Chau, Myers, and Faulring (2008b) the authors developed and evalu-
ated the Feldspar tool (see Section 2.2.17), which also allows associative
navigation. Also, Bush (1945) mentioned “a mesh of associative trails” in
his famous article “As We May Think”. Trattner et al. (2012) found that
users tended to use several different paths to navigate from one source
item to a destination item.

The test persons in a study by Boardman and Sasse (2004) cited three main
reasons for failing in information retrieval:

1. Removing items from the set of accessible items (deleting or archiv-
ing).

2. Clutter.
3. Misfiling.

The additional re-finding capabilities of TagTrees might reduce the problem
of having too many items within a folder. By selecting specific tags for items
to access, the average result set – showing only matching items – might lead
to less clutter in the retrieval process.

When a test person mentions misfiling as a reason for failure to access an
item, she most probably refers to the fact that cognitive models change (as
described in the paragraph on page 79 of Section 3.4.1). The test person pre-
sumably had good reasons to file the item into its storage folder. While in
the context of filing this item, the selected storage folder made sense. Oth-
erwise the user would have chosen another folder. The multi-classification
of TagTrees is able to improve the situation here as well.

4.5 The Effort of the Storage Process

This section discusses the implications of the TagTrees method and com-
pares it to the traditional method of folder hierarchies. For the sake of

101

4 The TagTrees Method

simplicity, this section mostly refers to files as items, neglecting the fact that
folders could also be managed within TagTrees.

Figure 4.3(a) shows a simplified flowchart of the process when a user stores
a file on her local hard disk. While in an application, where the file was
created or loaded from external sources, the storage process is initiated.
Then a “Save file. . . ” dialog window will be presented to the user. Within
this dialog window, the user navigates through her hierarchy of folders
looking for a promising destination folder. Due to the fact that the number
of files we handle is constantly increasing (see Section 3.1.1), there is a
certain probability that the destination folder moves deeper and deeper
into our folder hierarchy over time. Having decided where to locate the
new file, the filing process is finished resulting in a single folder to look for
the file.

To integrate TagTrees into our current computer systems without modify-
ing the “Save file. . . ” dialog windows of our current applications, there has
to be at least one additional step, as shown in Figure 4.3(b). When a user
wants to store a new file using TagTrees, there has to be a storage folder
for physically storing the new file. This storage folder has to be monitored
by a TagTrees implementation. Upon detecting a new file, a dialog window
would appear, where tags can be associated to the new file. After all tags
are entered and confirmed by closing the tagging dialog window, the nav-
igational structures of the TagTrees will be generated. This process results
in the file being accessible via a large number of paths using associative
navigation.

It is easy to see that the TagTrees method does not simplify the filing pro-
cess. Instead, the tagging step has to be done in addition to choosing a
destination folder. The clear benefit of TagTrees lies in the re-finding pro-
cess which is enhanced by multiple paths.

However, a clever implementation of TagTrees and a suitable setup are
able to compensate for the additional storage effort. First of all, the storage
folder of a TagTrees store should be chosen so that it is easy to reach in any
save file dialog. This way, there is no need to navigate to a folder which
is deep down in the folder hierarchy. In this case, choosing the storage
folder for a TagTree store most likely means less effort than searching for

102

4.5 The Effort of the Storage Process

saving new file
1©

choosing subfolder
2©

3©

file accessible in
destination folder 4©

(a) A simplified flowchart for adding a file
to the local folder hierarchy. In 2© and 3©,
the user has to navigate through her lo-
cal folder hierarchy, searching for a suitable
destination folder for the file. The process
results in 4©, where the file is accessible in
the single destination folder.

saving new file
a©

adding tag
c©

d©

file accessible in
multiple folders e©

choosing storage
folder b©

(b) A simplified flowchart for adding a file
to a local TagTree storage. It is assumed that
in b©, the storage folder is easy to reach
(Desktop, Home, . . .) and does not require
a long navigational process. The steps c©
and d© require one or more tags to be en-
tered. Several features offer good usability
and convenience: tag completion, tag rec-
ommender system, and default tags. The re-
sulting TagTrees in e© provide multiple rep-
resentations of the new file.

Figure 4.3: Simplified flowcharts of the process of adding a file to the local file system.
The steps 1© and a© can result from a download process, a copy process, or
from generating a completely new file in any user application. In comparison,
the tagging process contains one additional step. This might be compensated
for by the enhanced re-finding possibilities and the fact that files are usually
stored only once, but accessed more than once.

103

4 The TagTrees Method

a destination folder in the traditional folder hierarchy. There is actually an
advantage for the TagTrees method in this step of the process.

The following step of tagging the newly stored file is a crucial one in
terms of implementation issues. Many tagging systems that were subject
of pim studies lacked even basic features for a convenient tagging experi-
ence. Things like automatic completion of already known tags and a tag
recommendation system can ease the tagging process dramatically. Usabil-
ity has to be optimized in order to make this step as easy and rewarding
as possible.

Tagging an item has several benefits compared to choosing a destination
folder deep down a hierarchy of folders. In a tagging dialog, users are able
to assign any possible tag directly. This is not possible in a filing situation
where a user might be forced to navigate her up and down the hierarchy
when there is no obvious destination folder.

Additionally, a user does not have the possibility to use a folder recom-
mendation system for traditional filing in a folder hierarchy. This process
hardly scales over time. Most used tags and other recommended tags can
be easily selected using the mouse and do not require typing or naviga-
tion.

Any implementation of the TagTrees method has to make sure that the
tagging dialog receives great attention in the design process. Tagging is
often seen as a burden. If tagging is done correctly, the many advantages
while accessing items could be noticed by the user.

First of all, TagTrees support serendipity such that every now and then
items appear which were already forgotten. Because of the many naviga-
tional paths, this most likely happens more often within TagTrees than in
a strict hierarchy of folders. If files are stored in the wrong folder, they are
seldom found anymore by using navigation. As Section 3.1.1 described,
most files are never accessed at all. There is a chance that associative navi-
gation can lower the percentage of lost files.

The studies by Gibson, Miller, and Long (1998), Leung et al. (2008), and
Cho, S. Kim, and Lee (2009) clearly showed that the number of files ac-
cessed is a multiple of the number of files newly created or stored. Access-
ing files is a task which definitely happens more often than storing new

104

4.5 The Effort of the Storage Process

files. So if the item access process is improved by using associative nav-
igation in TagTrees, the higher effort of storing still results in an overall
improvement for the user.

The fact that files are stored ever deeper in the folder hierarchy (Cho, S.
Kim, and Lee, 2009, p. 163) requires more effort, because users take longer
to navigate to these files. From this point of view, a relatively flat TagTrees
structure is an advantage. The user just has to navigate to as many tag-
folders within the TagTrees as needed to locate the desired item among the
items displayed. Starting from visiting the very first tag-folder, she has the
chance to locate the item because items from “deeper” levels also appear
in the “higher” levels of TagTrees.

Another important aspect, which might lead to a higher acceptance for tag-
ging, is also related to the long-term benefits. Anecdotal evidence of long-
term users of TagTrees shows that users start to appreciate this method
much more by having positive moments in a re-finding process. However,
this requires a change of mind. Users are so accustomed to the traditional
folder hierarchy method, that they tend to use TagTrees the same way in
the beginning. When they learn that there is no need to remember the tags
they chose during the storage process – like they need to remember the ex-
act storage path in the traditional method – opinions and behavior change.
Users start having confidence that any association, which comes up when
thinking of an item will bring them to this item. In my opinion, the use of
a well-chosen controlled vocabulary (cv) amplifies this effect even more.

105

His dreams are like commercials
But her dreams are picture perfect and
Our dreams are so related
Though they’re often underestimated

Bubble Toes
Jack Johnson

5 tagstore Implementation

To be able to evaluate the assumptions of the previous chapter and to com-
pare with previous research, the TagTrees method was implemented. The
research software which was developed is called tagstore. 1

This chapter describes the general internal structure of the implementa-
tion, describes every module in detail, and illustrates the different setup
possibilities. The internal data structure consisting of human-readable text
files, is explained. Furthermore, the most important user-related workflows
are demonstrated, best practices are listed, and technical limitations of the
current implementation are discussed. The final section of this chapter con-
tains links to similar tagging products.

The TagTrees method and the tagstore implementation were also described
in Voit, Andrews, and Slany (2011), Voit, Andrews, Wintersteller, et al.
(2011), and Voit, Andrews, and Slany (2012a).

1. TagTrees (the method) is always written with two capital T’s and tagstore (the implemen-
tation) is always written in lower case letters.

107

5 tagstore Implementation

5.1 Motivation

The TagTrees method is a concept which is of limited use, if it can not be
used for testing and evaluation. In order to obtain both subjective (opin-
ions, suggestions,. . .) and objective (performance numbers, tagging behav-
ior, navigation behavior,. . .) feedback, the TagTrees method was imple-
mented in tagstore.

As an additional benefit, people using tagstore are acquainted with a dif-
ferent viewpoint. In contrast to the more or less static hierarchy of folders,
dynamic TagTrees allow associative navigation. I think that this minor no-
tion has huge potential, because users of tagstore are made aware that there
are possible alternative ways of file management.

Prior to the start of development of the current version of tagstore, some
basic attributes were specified:

Minimal task effort Each additional step a user has to do has to be well
justified. Workflows or features requiring too many steps without direct
benefit to the user will not be used. Therefore, the tagging process has to
be designed in a way that the user perceives minimal task effort and being
supported by the software as much as possible. The highest possible level
of usability is a key issue here as well.

Compatibility To be able to do field studies and give away tagstore to any-
body who is interested, tagstore should not be an “island”. Users should be
able to use any software they were using before tagstore. In particular, they
should be able to continue to use the file browser, desktop search engine,
and backup software of their choice. Another level of compatibility is plat-
form independence. If possible, the use of tagstore should not be limited to
one operating system alone. That said, the tagstore implementation should
be kept independent of platform-specific issues.

108

5.1 Motivation

Transparency Users do not trust in software products which confuse them.
The TagTrees method alone should be the only new thing around. Fiddling
with database systems 2, hiding the metadata in some proprietary format,
using too much “hocus-pocus” of any kind is not desirable. Configuration
data and metadata is stored in human-readable text file format. Users of
tagstore should always know where their data is and that nothing unex-
pected will happen to it. In case of an emergency, they should still be able
to use it without any part of tagstore.

Openness The source code of tagstore is under an open-source license 3

and available for free download 4 , 5. Additionally, all research data that
was generated in studies and experiments is available for download as
well. This ensures that everybody is able to verify, re-create, or extend my
research in the spirit of Open Science 6 and Reproducible Research 7.

Limitations To follow the principle of keep it short and simple (kiss),
tagstore does not have to be the perfect product. Usually, research proto-
types have to be only good enough for testing. The tagstore implementation
should exceed this level, without trying to become a flawless product. With
these restrictions in mind, it is possible to implement tagstore even with
the given, very limited resources. The self-defined area of interest of single
user, single system helps to prevent losing track with complicated security
or multi-user issues. 8

2. Most likely, databases break at least the usual backup method (shut down database,
do backup, restart database) and cause users to duplicate data just in case they are not
able to access this database black box for any reason.

3. The license for tagstore is gnu General Public License (gpl) version 3 or later: https:
//www.gnu.org/copyleft/gpl.html – retrieved on 2012-08-16.

4. http://tagstore.org – retrieved on 2012-07-17.
5. https://github.com/novoid/tagstore – retrieved on 2012-08-16.
6. http://www.openscience.org – retrieved on 2012-08-16.
7. http://reproducibleresearch.net – retrieved on 2012-08-16.
8. Further research has to be done to explore this very important issue of multi-user

aspects of TagTrees.

109

https://www.gnu.org/copyleft/gpl.html
https://www.gnu.org/copyleft/gpl.html
http://tagstore.org
https://github.com/novoid/tagstore
http://www.openscience.org
http://reproducibleresearch.net

5 tagstore Implementation

Framework One of the most important reasons for implementing this soft-
ware is for testing purposes. Therefore, tagstore has to provide features that
enable test persons to modify interface behavior and configuration without
having to change a single line of source code. To be able to test different
things, tagstore has to implement more than the standard TagTrees method
described in the previous chapter. This way, tagstore can be seen as a test-
ing platform, a framework for doing a wide spectrum of tests in similar
research areas.

5.2 Software Modules

In order to stay at a high level of implementation 9, tagstore was developed
with Python 10 version 2.7. For the Graphical User Interface (gui) elements,
the Qt framework 11 was used. As a very positive side effect, these changes
also provide a certain level of independence from the underlying operating
system.

As illustrated in Figure 5.1, tagstore consists of four levels of abstraction.
The following sections describe each of the modules of tagstore.

tagstore Dialog and tagstore Manager These two modules are the only
modules that have a gui. Most of the functionality of tagstore is accessed
through these modules. Section 5.3 and 5.4 describe those modules in de-
tail.

tagstore Logic The next module of tagstore (as shown in Figure 5.1) is
tagstore logic. This module and all lower-level modules do not directly have
a gui. Following the principle of Model-View-Controller (mvc), the central
logic behind tagstore is encapsulated in this module: controlling the gui,
managing the data.

9. The proof of concept implementation was finished within only two days.
10. http://www.python.org/ – retrieved on 2012-08-16.
11. http://qt-project.org/ – retrieved on 2012-08-16.

110

http://www.python.org/
http://qt-project.org/

5.2 Software Modules

tagstore
linux

tagstore
windows

tagstore
dialog

tagstore
logic

tagstore
os-wrapper

tagstore
os x

tagstore
manager

Figure 5.1: The tagstore implementation layers: the user interface consists of the tagstore
dialog window for tagging items and the tagstore manager for maintaining the
stores. In the tagstore logic layer, the general algorithms are implemented. Gen-
eral adaptions to the operating systems are kept in the tagstore os-wrapper layer.
Operating system specific implementation is encapsulated within tagstore linux,
tagstore os x, and tagstore windows packages.

tagstore OS-Wrapper The os-wrapper module provides generic inter-
faces to the modules that are specific for the target operating systems:
gnu/Linux, Apple Mac os x, and Microsoft Windows. All system calls are
abstracted to this level of access.

tagstore Linux This module contains all system calls that are specific to
gnu/Linux. TagTrees are created using folders for each tag and symbolic
links to link the items in the TagTrees with their originals in the storage

folder.

tagstore OS X This module contains all system calls that are specific to
Apple Mac os x. The implementation is very similar to the module for
gnu/Linux, and symbolic links are used here as well.

tagstore Windows This module contains all system calls that are specific
to Microsoft Windows. Unlike the other two operating system-dependent

111

5 tagstore Implementation

Figure 5.2: A screenshot of the tagstore tagging dialog from the 2012-08-16 version using
gnu/Linux. On the right-hand side, the list shows all untagged items that are
stored in the storage folder. At the bottom right, the user can enter comma-
separated tags into the tag line. The tag-recommending feature shows the two
possible completions for partially typed-in string “hi”. The left-hand side con-
sists of tag recommendations from the recommender system.

modules above, there are no usable 12 links in ntfs. Instead, shortcuts are
used. Owing to the technical representation of shortcuts in the user space
and not at the file system level, their performance is very poor compared
to symbolic links. See Section 5.8.2 for more information concerning per-
formance.

5.3 tagstore Dialog

The most prominent module, as seen from the users’ perspective, is the
dialog window that offers the tagging capability. Figure 5.2 shows an ex-
ample tagstore dialog window with one item to tag and the user already
typing the second tag. The following elements are visible:

12. Microsoft Windows uses New Technology File System (ntfs) as its file system. Al-
though ntfs offers technical representations of links, Windows does not offer any us-
able user-space tools to maintain links. Instead, Windows uses so-called shortcut files.
All other operating systems use symbolic links implemented at the file system level.

112

5.3 tagstore Dialog

Item list On the right-hand side there is a list containing all untagged
items. When a user chooses to press the “Postpone” button, current items
remain in the list for future tagging.

Tag line The tagging line (or short: “tag line”) is below the item list. Users
can enter tags for the currently selected item in the item list. Multiple tags
are separated with commas (“,”). Thus, multi-word tags are possible with
tagstore as well. There can also be a second tag line for a different type of
tags. See page 126 for details on this.

Tag cloud The left-hand side is filled with a tag cloud. This cloud shows
a subset of already known tags. The bigger the tag is visualized, the more
relevant the tag is according to the recommendation system. Users are able
to click tags in the tag cloud, which are then appended to the tag line. See
Section 5.3.1 below for more details on the recommender system.

Buttons The “Tag!” button assigns the tags from the tag line to the cur-
rently selected item on the item list. If this was the last item within the item
list, the tag dialog is closed. Selecting the “Postpone” button closes the tag
dialog immediately. In this case, all items which are listed in the item list
remain there. The “Manager . . . ” button opens the tagstore Manager. To
its left side, there is the “Help” button, represented by a question mark
icon. In any tagstore interface, the help button opens a help window which
explains all relevant gui elements and their functions.

Postponing the tagging process is a widely demanded notion that most pim

systems do not provide yet. Malone (1983, pp. 8, 11) mentioned “untitled
piles” and “deferred classification”. Whittaker and Sidner (1996) described
the problems of users who want to “postpone their judgement in order to
determine the value of information”.

Another feature of tagstore is very convenient for tagging several items:
When the user has filled the tag line and confirms with “Tag!”, the current
list of tags stays in the tag line (default tags). If the next item is similar to
the previous one, re-using tags is made very easy.

113

5 tagstore Implementation

Tagging multiple items with the same set of tags is intuitive: using the
usual method to mark items 13 defines the set of items. When the user then
adds her tags to the tag line, the set of items is tagged using the same tags
in a single step.

The tagging dialog as well as the interfaces of the tagstore Manager were
initially designed using the paper prototype method. Over time, they were
constantly optimized using the feedback of long-term users and observa-
tions from formal experiments. The usability of the tagging dialog is crucial
for the user acceptance.

5.3.1 Tag Recommendations

The tag recommendation system (or in short “recommender”) uses several
aspects to generate the tags of the tag cloud:

Usage Frequency The more often a tag is used, the higher its ranking
becomes. More frequently used tags are likely to be more important to the
user.

Similarities to Item Name The name of the item is split into sub-words.
Each sub-word exceeding a length of four is compared to the set of known
tags using the Damerau-Levenshtein distance. If a sub-word of the item
name is equal to a tag, its value is maximized.

Type Similarity The algorithm determines tag usage frequencies related
to file extensions. For example, image files with the file extension “.jpg”
are likely to receive tags similar to other image files of that kind.

13. Selecting single items from the item list: Ctrl and the primary mouse button; selecting
a range of items from the list: starting with the currently selected item using Shift and
the primary mouse button.

114

5.4 tagstore Manager

Similarities to Known Items The sub-words mentioned above are com-
pared to all sub-words of known items. That way, similarly-named items
receive similar tag recommendations.

Metadata The metadata of an item (content, explicit metadata, . . .) should
be part of any advanced recommendation system. Unfortunately we faced
a problem: when adding huge files like movies to tagstore, metadata could
only be extracted when the file storage process is completed. On the one
hand, this is not trivial to detect. 14 On the other hand, the tagstore dialog
would not appear instantly when the file is initially added, but when the
file copy process has finished. This would result in interrupting tagstore di-
alogs when the user is already in a different context. Therefore, we skipped
file content for this implementation.

The recommender modules result in a set of values for each tag. After gen-
erating the sum of all values per tag, the highest ranked tags are displayed
in the tag cloud.

The implementation of the recommender is described in detail in Schober
(2012).

5.4 tagstore Manager

The second user interface of tagstore is called the tagstore Manager. This gui

is to configure general tagstore settings and stores. It is important to men-
tion the fact that a user can have as many stores as needed. For example,
one store for personal items, one for each business project, and one store
for movies. There is no connection between stores besides the fact that they
are all managed by the same tagstore installation. Each store has its own
storage folder and its own TagTrees.

The tagstore Manager consists of several different views which are shown
as tabs. Each tab comprises a configuration dialog of a feature of tagstore.

14. Determining the status of a file transfer over the network is hard to do, because transfer
can be delayed due to network bandwidth and many other issues.

115

5 tagstore Implementation

Figure 5.3: tagstore Manager – My Tags.

Some of them are for user comfort, and some of them are for basic store
management features.

5.4.1 My Tags

The My Tags tab (Figure 5.3) configures a controlled vocabulary. This store-
specific 15 feature can only be activated before a store is created. For all stores
that have this feature activated, the list of tags can be managed here using
“Add tag”, and “Remove tag”.

5.4.2 Datestamps

Temporal views are very important to users, as many studies described in
Chapter 2 show. In tagstore, the user is able to add tags which are dates-
tamps. This store-specific optional feature can be very handy: an activated

15. All features which can be used on a per-store basis offer a store selection drop-down
list at the top of the tab window.

116

5.4 tagstore Manager

Figure 5.4: tagstore Manager – Datestamps.

datestamp is a default tag which appears in the tag line (Figure 5.4). Ei-
ther the current day (for example: 2012-08-16) or the current month (for
example: 2012-08) is used in iso 8601

16 format. These default tags can be
manually modified or removed by the user. Each item tagged with such a
datestamp tag, can be found in corresponding TagTrees folders. Datestamp
tags are tags just like any other tag.

User comments showed that using datestamp tags for months is a reason-
able choice: it does not lead to as many tags as the daily datestamps do.
Within the TagTrees of 2012-08, the user finds all items (and tags of items)
which were added in August 2012.

The “Hide activated datestamp in tag-line” option does not place the dat-
estamp into the tag line. It just uses this tag silently, without distracting the
user with its presence in the tag line.

117

5 tagstore Implementation

Figure 5.5: tagstore Manager – Expiry Date.

5.4.3 Expiry Date

In my opinion, many more applications should provide a feature com-
parable to the Expiry Date feature (Voit, Andrews, and Slany, 2009). As a
general tagstore property, the user is able to activate and configure this fea-
ture in this tagstore Manager tab globally (Figure 5.5). The string entered
into the input line works as a prefix. Combinations of this prefix and a
valid iso 8601 datestamp for months are interpreted as expiry dates (by
convention).

For example, if the user chooses to stick with the default expiry date prefix
exp, a tag like exp2013-01 is an expiry date. This tag is entered just like
any other tag: in the tag line of the tagstore dialog. Hence, the user is able
to navigate to items related to a certain expiry date in the TagTrees.

Items, whose expiry dates are in the past, are moved to the storage folder
named expired items. All tags of those items are added to the end of
the file name. Thus, items are never deleted, just moved to this special
folder. The user is still able to recover the items in the expired items folder

16. http://www.iso.org/iso/catalogue_detail?csnumber=40874 – retrieved on 2012-08-
16.

118

http://www.iso.org/iso/catalogue_detail?csnumber=40874

5.4 tagstore Manager

Figure 5.6: tagstore Manager – Re-Tagging.

or delete them manually. Using expiry dates on items keeps the TagTrees
leaner.

Almost no user regularly walks through her folder hierarchy to look for
items that are of no use anymore. The big advantage of this feature is
that the user has a very good feeling for any “expiration” (only) during
the process of storing. If the user is planning a trip to Paris, she can tag the
portable document format (pdf) file of the Paris Métro 17 with an expiration
date that ends after her trip. This way, this item is removed from her direct
view (TagTrees) automatically. She does not have to remember to delete
unnecessary items any more. If the user knows that an item will expire,
but is unsure what expiry date to choose, she can choose an expiry date in
the far future. This is still better than collecting items that are of no value
any more.

119

5 tagstore Implementation

5.4.4 Re-Tagging

If the user wants to modify the tags associated with an item, she can go
to this tab of the tagstore Manager (Figure 5.6). For each store, there is an
alphabetically ordered list of all items. After selecting an item and clicking
on “Re-Tag”, the tagstore dialog window opens with the corresponding
item and its tags. As usual, the user is able to modify tags in the tag line
and confirms with “Tag!”.

From the usability perspective, it would be much better if the user were
able to invoke the re-tag process while seeing the item in her file browser.
Unfortunately, such a feature is platform-dependent and file-browser de-
pendent. Nevertheless, it can be implemented any time: tagstore comes
with the script tagstore retag.py which can be used to invoke such a re-
tag process from external tools. If a file browser is able to start external
tools, such integration is easily configured.

5.4.5 Rename Tags

Once in a while a user wants to re-organize her tags. This process is called
tag gardening (Peters and Weller, 2008), and involves deleting, splitting,
combining, and renaming tags. For renaming tags, the tagstore Manager
offers a separate tab (Figure 5.7). When a user selects a tag and “Rename”,
she can change the name to a different one. This way, tags can be both
combined (renaming to an existing one) or renamed. All items associated
with this tag are re-assigned automatically.

For example, tag gardening is recommended in the following cases:

• Reclining interest in a topic: combine several old tags into one:

– oldtimers, vans, convertibles→ automotive

• Growing interest: split tags:

– IT→ hardware, software, internet

• Improving usability for typing frequently used tags:

17. http://www.parismetro.com/ – retrieved on 2012-08-16.

120

http://www.parismetro.com/

5.4 tagstore Manager

Figure 5.7: tagstore Manager – Rename Tags.

– university→ edu

5.4.6 Store Management

The store management tab of the tagstore Manager (Figure 5.8) is needed
when a new store should be created or an old one deleted. As mentioned
before, a user is able to maintain as many different (and separated) stores
as needed. Best practices show that separation into different stores is only
reasonable, when two topics have little or nothing in common and the
cognitive model differs as well.

When a new store is created (“New Tagstore” button), its configuration is
taken from the file store.cfg.template 18. This is on purpose: test users
are not able to change the setup chosen by the persons conducting an ex-
periment. If a person wants to change these settings, any text editor can
modify its content.

18. This template file is located in the installation folder of tagstore:
tagstore/tsresources/conf.

121

5 tagstore Implementation

Figure 5.8: tagstore Manager – Store Management.

If an old store is deleted (selecting store and “Delete . . . ” button), all items
remain on the hard disk. No item can be deleted by accident. Once again:
tagstore never deletes any item from the file system.

5.4.7 Sync Settings

Figure 5.9 shows the tab for setting up synchronization. This feature is
currently in beta status. Johannes Anderwald developed a version of tag-
store for mobile devices running the Android operating system (Ander-
wald, 2012). In this tab, the user is able to choose a sync tag. This sync
tag is used to determine which items to synchronize to the mobile device.
With this method, the user has the ability to choose the items for her mobile
device.

For example, with the sync tag android, each item that will be tagged with
android gets synchronized to the mobile device. Besides this synchroniza-
tion, the sync tag is a tag like any other tag.

122

5.5 Internal Storage Structure

Figure 5.9: tagstore Manager – Sync Settings.

5.5 Internal Storage Structure

The tagstore implementation stores information in a set of text files. Some
of them are general settings and stored in a sub-folder of the tagstore in-
stallation folder (which is denoted as $mybin for the purpose of this de-
scription). Other settings are specific to a store, located in a sub-folder of a
store folder (denoted as $mystore).

Unless stated otherwise, all files are human-readable text files following the
standardized format of ini files 19. They can be viewed and modified with
any text editor and parsed easily using existing programming libraries.

$mybin/tagstore/tsresources/conf/tagstore.cfg

This is the main configuration file for the tagstore installation. An example
tagstore.cfg file content might look like this:

19. https://en.wikipedia.org/wiki/INI_file – retrieved on 2012-08-17.

123

https://en.wikipedia.org/wiki/INI_file

5 tagstore Implementation

[settings]

config_format=1

current_language=en

store_config_directory=.tagstore

store_tags_filename=store.tgs

store_config_filename=store.cfg

store_vocabulary_filename=vocabulary.txt

tag_separator=","

supported_languages="en,de"

expiry_prefix=exp

max_tags=7

sync_tag=android

first_start=false

show_wizard=false

show_tag_help=false

show_my_tags_help=false

[stores]

1=/home/user/private

2=/home/user/job/aproject

3=/home/user/job/otherproject

config format is a version number of the format of the configuration file
content style. This number will be changed if the format of this file is
changed substantially.

current language defines the language of the tagstore implementation.
Currently, tagstore is implemented multilingually in English (value: en)
and German (value: de). The setting is derived from the system settings,
the default and fall-back is English.

store config directory defines the name of the folder in the store which
contains internal data.

store tags filename defines the name of the file which holds the item
names, assigned tags, and a timestamp.

store config filename defines the name of the file which holds the store
settings.

124

5.5 Internal Storage Structure

store vocabulary filename defines the name of the file which holds the
controlled vocabulary (“My Tags”) of a store (see Section 5.4.1).

tag separator defines the character that separates multiple tags.

expiry prefix defines the value for the prefix of expiry dates. See Sec-
tion 5.4.3 for more information related to expiry dates.

max tags sets the limit for the maximum number of tags. See Section 5.8.3
for details.

sync tag holds the value for the sync tag, as described in Section 5.4.7.

first start, show wizard, show tag help, and show my tags help hold Bool-
ean values which define whether help and/or wizard windows should be
displayed or not.

The list of entries in the [stores] section is the list of active stores.

$mybin/tagstore/tsresources/conf/store.cfg.template

This file is the configuration template for the next store which is created.
See the description of its implications in Section 5.4.6. The content of this
file corresponds to store.cfg, which is described below.

$mybin/tagstore/tsresources/conf/store.tgs.template

This file is used as a template for store.tgs and contains more or less its
empty header.

$mystore/.tagstore/store.cfg

Any configuration which relates to a specific store is stored in this file. A
typical store.cfg might look like the following:

125

5 tagstore Implementation

[store]

store_id=0

[settings]

config_format = 1

datestamp_format=1

show_category_line=3

category_mandatory=false

datestamp_hidden=false

The store id holds the store’s identifier number. It corresponds to a line
in the [stores] section within tagstore.cfg.

As already described above, the config format is a marker for the format
of this file.

datestamp format can be either 1 for the current month (like: 2012-08) or
2 for the current day (like: 2012-08-17). See Section 5.4.3 for details.

show category line defines the number of tag lines used and whether “My
Tags” is activated:

show category line tag lines “My tags”
0 one not activated
1 two not activated
2 two activated
3 one activated

category mandatory is only used for configurations with two tag lines. If
this value is set to true, the second tag line is mandatory as well. If it is set
to false, the second tag line could be left empty.

datestamp hidden holds the setting for showing the optional datestamp in
the tag line. See page 5.4.2 for more details.

$mystore/.tagstore/store.tgs

The store.tgs contains information which describes the current state of
the store content: all items with their tags and the time stamp of their first
occurrence. An example file for three items could look like the following:

126

5.6 Workflows

[settings]

config_format=1

[files]

test.txt\tags="test,2011-05"

test.txt\timestamp=2011-05-25 16:38:21

test.txt\category=2011-05

inbox.org\tags=2011-06

inbox.org\timestamp=2011-06-15 08:26:04

inbox.org\category="2011-06,gtd,emacs"

references.org\tags=2011-06

references.org\timestamp=2011-06-15 08:26:04

references.org\category="2011-06,gtd,emacs"

$mystore/.tagstore/store.log

All logging information of a store is written in this file. It basically resem-
bles notes about the history of a store: when a new item is added, which
tags were assigned, and any incident reported by the tagstore software.
This file is of interest for debugging purposes.

This file is not in ini file format.

$mystore/.tagstore/vocabulary.txt

All phrases of the controlled vocabulary (cv) (“My tags”) are stored in this
file. It is not in ini file format: each line consists of one tag for the cv. The
simple format of this file ensures, it is easy to generate from existing cvs
and convenient to re-use.

5.6 Workflows

The implementation of TagTrees can be carried out in many different ways.
This section describes the workflows from the users’ perspective. A number

127

5 tagstore Implementation

of smaller workflows was already mentioned in Section 5.3 and Section 5.4
and is omitted here.

5.6.1 Installation

The installation files of tagstore can be obtained from the tagstore website 20

or from the code repository 21. There are two different kinds of installation
processes: (1) using installer packages which are platform-specific and (2)
manually installing tagstore from the source files. The latter is only recom-
mended for users with advanced knowledge 22 of their system.

Installer Packages

The installer packages for Microsoft Windows and Apple os x were created
using BitRock InstallBuilder 23. All dependencies are included, but can be
left out in the installation procedure. The install process is very easy and is
accomplished with dialog windows describing the current step and offer-
ing help.

Manual Installation

Using the manual installation process ensures using the latest source code
available. Obtaining the source code from the repository is explained on
github 24.

Before installing tagstore, the user has to install the dependencies which
are required to run tagstore:

20. http://tagstore.org – retrieved on 2012-08-18.
21. https://github.com/novoid/tagstore – retrieved on 2012-08-18.
22. Editing configuration files, setting execution paths, installing dependencies, debugging

configuration problems.
23. http://installbuilder.bitrock.com/ – retrieved on 2012-08-18.
24. Basically it can be done by downloading a zip archive or cloning the repository using

the git version control system.

128

http://tagstore.org
https://github.com/novoid/tagstore
http://installbuilder.bitrock.com/

5.6 Workflows

• Python 25 version 2.6 or 2.7 and some Python libraries 26:

– ConfigParser 27

– logging 28

– gettext 29

• PyQt version 4.6 or later.
• Python for Windows Extensions 30 Build 214 or newer (needed for

Microsoft Windows only).

It is recommended to use the default installation paths of the packages.

The next step is to configure tagstore before it is started the first time. For
the purpose of this description, the installation folder of tagstore is denoted
with $bin. All command line examples and folder paths are written in
posix format using forward slash (/) as the path separation character. Users
of Microsoft Windows have to adapt the commands to the syntax of their
system.

In the $bin/tagstore/tsresources/conf/tagstore.cfg file, the user has
to check or modify the settings for the following variables (which are de-
scribed in Section 5.5):

• current language (en or de)
• max tags (depending on the system used; if unsure, retain the default

value)
• first start and all settings starting with show should be set to true

• The section below [stores] should be empty.

In the $bin/tagstore/tsresources/conf/store.cfg.template file, the
user has to set show category line which is described on page 126. This is
the most important decision when setting up a store: whether or not to use
a second tag line (for categories) and whether or not to use a controlled
vocabulary (cv). She might as well check category mandatory. All other

25. http://www.python.org/getit/ – retrieved on 2012-08-18.
26. Some libraries are probably already installed on an average Python-equipped system.
27. http://docs.python.org/library/configparser.html – retrieved on 2012-08-18.
28. http://docs.python.org/library/logging.html – retrieved on 2012-08-18.
29. http://docs.python.org/library/i18n.html – retrieved on 2012-08-18.
30. http://starship.python.net/crew/mhammond/win32/ – retrieved on 2012-08-18.

129

http://www.python.org/getit/
http://docs.python.org/library/configparser.html
http://docs.python.org/library/logging.html
http://docs.python.org/library/i18n.html
http://starship.python.net/crew/mhammond/win32/

5 tagstore Implementation

settings could be changed using the tagstore Manager after the store has
been set up.

If a cv is used and the user already has a list of vocabulary that should be
re-used within tagstore, she can put this list – one word per line – in the
$bin/tagstore/tsresources/conf/store.tgs.template file.

After setting up the configuration files, tagstore is ready to be started for
the first time, setting up the first store. To manually start the tagstore
Manager from the command line, the user changes her current path to
$bin/tagstore/ and invokes: python ./tagstore manager.py

The following section continues with the description on how to set up the
first store.

The tagstore implementation monitors the storage folders of each store.
This can only be done when the tagstore software is running in the back-
ground. Installing tagstore using the installer packages automatically en-
sures that tagstore is started on system start. When using the manual instal-
lation process, the user has to set up such a starting command by herself.
She can also choose to start tagstore manually by changing her current path
to $bin/tagstore/ and invoking: python ./tagstore.py

This tagstore background process only watches for changes in the storage

folders of the stores. It has a very small memory footprint and does not
need many cpu cycles. Hence, it does not slow down the system signifi-
cantly.

Setting Up the First Store

The installation process should result in an open tagstore Manager gui and
an open assistant window. The latter helps the user through the process of
creating a new store and is described in detail in Pirrer (2012). Since the
location of a store can not be changed afterward, this decision should be
made with care.

After the new store is created, the user is advised to go through all Man-
ager tabs and check the settings. It is recommended to change settings like
datestamp, expiry date prefix, and so on as soon as possible. This ensures a

130

5.6 Workflows

consistent user experience. It is worth mentioning that some settings in the
tagstore Manager are specific to stores. The tabs of those settings provide
a drop-down menu on the top which should be used to select the desired
store.

5.6.2 Updating the Installation

There is no automatic update process implemented yet. As long as the
version number of the configuration files does not change, a manual update
can be achieved by replacing the files in $bin/tagstore/.

It is important to back up (and later restore) the configuration settings in
$bin/tagstore/tsresources/conf/ in advance.

5.6.3 Adding Items

New items 31 are added to a store by placing them into the storage folder
of a store. This can be done by either using this path when saving new files
within an application or by copying an existing item to this destination.

Once the tagstore background process recognizes a new file, the tagstore
dialog window appears and the user is able to choose appropriate tags. The
tag recommendation system (Section 5.3.1) and the tag completion feature
make sure that the tagging effort is minimized as much as possible.

Multiple items can be added at once. The tagstore dialog will list all new
items in its list. Tagging multiple items with the same set of tags is de-
scribed in detail in Section 5.3.

31. It is important to know that a store is able to manage files as well as folders. Placing
folders in the storage folder is advised when working with software like LATEX (a LATEX
document consists of TEX files and several additional files) or any other self-contained
folders like source code projects.

131

5 tagstore Implementation

5.6.4 Retrieving Items

The user is able to access items in a store along many different paths as
shown in Figure 4.2 (p. 98).

Direct access Items in the storage folder are never modified by tag-
store. 32 Therefore, the user is able to re-find items by their names directly
in the storage folder.

TagTrees The most important access method for items within tagstore
is through associative navigation within the TagTrees. Within each store,
there is a folder called navigation 33. In this folder, the user sees all the
tags assigned to items, including the automatically assigned tags such as
datestamps (described in Section 5.4.2).

Associative navigation is somewhat different to navigation within a strict
hierarchy of folders and may require some time to become accustomed.
Within TagTrees, the user chooses the first tag which seems to be appro-
priate. This is done by entering the folder whose name comprises the tag
name.

Within this tag folder, the user is already able to locate all items that were
tagged with this tag. In a populated store, the set of items in the first level
of TagTrees might be very large. Therefore, the user might choose a second
tag folder which might be related to the item she is looking for. Within
this second level of the TagTrees, there are only items which were tagged
using both, the first tag and the second tag. Thus, the set of items is most
likely smaller than the set of items in the previous folder. These steps are
repeated until the resulting set of items is small enough to scan easily.

One potential drawback is that an item has to be tagged by at least two
tags to avoid the possible necessity to scan through a large set of items in

32. There is a single exception: expired items are moved to the expired items folder as
described in Section 5.4.3.

33. For stores with two tag lines, there are two folders named navigation and
descriptions instead.

132

5.6 Workflows

the first level of TagTrees. The good thing is that none of the tag folders
contain an empty set of items.

It is worth noting that TagTrees can be navigated within any “File open . . . ”
or “File save . . . ” dialog from any application as well. Most other pim ap-
plications do not offer this kind of system integration.

To sum up the possibilities, users are able to navigate and access items in
the storage folder and all folders within TagTrees. Deleting and renaming
items is restricted to the storage folder only. The next sections provide
more information on this issue.

5.6.5 Renaming Items

If an already stored file is renamed in the storage folder, the tagstore back-
ground process is able to recognize this (unless multiple rename actions
happen at the same time). Therefore, tagstore assigns the known set of tags
from the old file name to the new file name without asking for new tags.

Renaming folder names results in a new tagging process. This is because
tagstore is not able to determine similarities of folder content yet.

Any manual renaming within TagTrees is not recognized by tagstore and
might result in broken links or errors. See Section 5.8.4 for more explana-
tion.

5.6.6 Deleting Items

Items can be deleted from the storage folder any time. All related tag
folders and links are removed from the TagTrees automatically as long as
the tagstore background process is running.

Any manual delete action within TagTrees is not recognized by tagstore
and might result in broken links or errors. See Section 5.8.4 for more expla-
nation.

133

5 tagstore Implementation

5.6.7 Getting Help

Any tagstore gui offers context-specific help. These help windows can be
opened by choosing the button with a question mark icon. Additional help
is available in the Frequently Asked Questions (faq) on the project home
page 34.

5.7 Best Practices

Several best practices and tips from long-term users have proven to be of
value. Users of tagstore should be able to profit from the insights:

Easy-to-reach storage folder In order to get the best user experience, the
user should be able to navigate to the storage folder very quickly. This
can be achieved by either locating the store at an easy-to-reach location or
linking the folder to an easy-to-reach location.

Particular applicability The tagstore software can be used for any kind of
item. Many long-term users of tagstore reported particular applicability of
tagstore for folders they previously named misc, sundries, or download
folders of web browsers. Item types which demand multi-classification
should be stored within a tagstore. This way, a user is able to classify a
movie file like “Delicatessen” 35 with “Fantasy” and “Comedy”.

Desktop Search Engines There is no problem when tagstore is used on
a system which runs a desktop search engine. I recommend any user to
do so. To avoid multiple hits for any item stored in tagstore, the desktop
engine should be configured to ignore all TagTrees. Items are indexed and
found in the storage folders and the links from within TagTrees might
irritate desktop search engines.

34. http://tagstore.org – retrieved on 2012-08-18.
35. http://www.imdb.com/title/tt0101700/ – retrieved on 2012-08-19.

134

http://tagstore.org
http://www.imdb.com/title/tt0101700/

5.8 Technical Limitations

Backup software Any backup software can be used on a computer run-
ning tagstore. The user might want to add an exception rule for the Tag-
Trees folders, if the backup software is not able to recognize links as links.
In that case, the backup software replaces those links with copies of the cor-
responding target items. This results in unwanted multiplication of backup
space.

Alternative file browsers Due to the design of tagstore, it can be used with
any kind of file browser. Usually, the default file browsers (such as Win-
dows Explorer or os x Finder) do not offer the best experience for advanced
users. Alternative file browsers such as Free Commander 36 (Windows), To-
tal Commander 37 (Windows), or Path Finder 38 (os x) allow much more
advanced file navigation and management.

5.8 Technical Limitations

The theoretical number of links which would be created for each item is
illustrated in Table 4.1 (p. 96). Additionally, a large set of folders has to be
created for each tag in the TagTrees. This exponential relation between the
number of tags per item and the number of links and folders has two main
consequences in the current implementation of tagstore: using too many
resources and taking too long to create.

5.8.1 Resources

Inodes are the smallest entities of file systems. Most file systems have a
limited number of inodes that can be used on a single partition. This means
that the number of files, folders, and links is limited by this upper bound.

36. http://www.freecommander.com/ – retrieved on 2012-08-19.
37. http://www.ghisler.com/ – retrieved on 2012-08-19.
38. http://cocoatech.com/pathfinder/ – retrieved on 2012-08-19.

135

http://www.freecommander.com/
http://www.ghisler.com/
http://cocoatech.com/pathfinder/

5 tagstore Implementation

tags/item System 1 [s] System 2 [s] System 3 [s]
4 0.02 0.35 0.46

5 0.08 1.26 2.39

6 0.38 7.55 14.09

7 4.13 51.06 104.75

8 88.87 421.05 798.04

Table 5.1: Performance measurements using three different combinations of hardware and
software. The more tags are used, the longer it takes to create the TagTrees link
structure. Up to four tags, any system is able to create TagTrees instantly. Using
more tags per item, performance depends on the hardware and software used.
System 1 runs gnu/Linux on a ssd, System 2 runs Windows 7 on a standard
hard disk, and System 3 runs Windows 7 in a virtualized environment.

Usually, this number is so high, that most users never get near to this
limit. However, heavily-linked structures like TagTrees can use up a large
number of inodes very quickly. Eight new tags for a single item result in
approximately 219,200 additionally used inodes.

Therefore, tagstore has a monitoring feature which reports the user when
she is using up too many inodes per partition. A very rough estimation
is that a store can hold a few thousand items without occupying all the
inodes of an average partition.

5.8.2 Speed

The large number of folders and links which have to be created in the
TagTrees when items are tagged, raises issues of speed. A small sample of
performance measurements with the current version of tagstore is shown
in Table 5.1. The more tags used, the longer it takes to create the TagTrees
link structure. Up to four tags, any system is able to create TagTrees in-
stantly. Using more tags per item, performance depends on the hardware
and software used.

The systems which were tested to derive the measurements had the follow-
ing properties:

• System 1:

136

5.8 Technical Limitations

– Hardware: lenovo X200s notebook, Samsung ssd, intel Core 2 Duo
cpu (L9400 1.86 GHz), four gigabytes of ram

– Software: Ubuntu 11.04 gnu/Linux, 2.6.39 kernel (32bit)

• System 2:

– Hardware: hdd, intel 6-core cpu (3.3 GHz), eight gigabytes of
ram

– Software: Microsoft Windows 7 (64bit)

• System 3:

– Hardware: Apple MacBook Air (2010), hdd, Intel Core 2 Duo
(2.13 GHz), four gigabytes of ram

– Software: Windows 7 (32bit) being virtualized (on a os x host)
with 768 megabytes of virtual ram and a virtual hdd

There are several issues which contribute to the differences between the
three test systems. The most dominant ones are:

Windows shortcuts versus symbolic links Microsoft decided not to use
some advanced features of ntfs. One of them are links which are managed
at the file system level 39. Windows uses shortcuts instead. Shortcuts are
special kinds of files with the file extension “lnk”. The majority of end
user applications can not handle links on ntfs correctly. This is the reason
for tagstore to use shortcuts as well. Creating shortcuts is a user space
process and requires much more than just telling the file system to create a
symbolic link. That issue results in much worse link creation performance
on Microsoft Windows systems.

SSD versus HDD Using a Solid State Drive (ssd) results in much better
input/output performance than using a Hard Disk Drive (hdd). This has a
direct impact on the performance of creating TagTrees.

The best performance can be achieved with a non-Windows operating sys-
tem running on an ssd.

39. On ntfs such links are called “junction points” (for folders) and “ntfs symbolic links”
(for files).

137

5 tagstore Implementation

5.8.3 Workarounds and Solutions

As long as the tagstore implementation does not use technologies like
fuse

40 or network drives, the limits on inodes and performance cannot
be ignored. Some workarounds include:

Limiting the Number of Tags per Item

As a direct consequence of the fixed number of inodes and the speed is-
sue, tagstore limits the maximum number of tags per item. The setting of
max tags (described on page 125) defines this setting. Users with the ability
to edit configuration files manually are able to modify this setting accord-
ing to their system environment.

Contrary to first thoughts, this does not represent a huge disadvantage.
The average number of tags per item is small. For example, Hsieh et al.
(2008, Figure 3) reported 3.1 tags per item on average and Pak, Pautz, and
Iden (2007) 1.8 tags per item on average.

Choosing a Different File System

On gnu/Linux systems, the user can choose to use a file system which
does not have these limitations on inode numbers. For example, Extended
File System (xfs) or ReiserFS might not have this restriction.

Experienced gnu/Linux users are able to create a loop-back file system
which is mounted on the path of the TagTrees folder. This way, the loop-
back file system is used only for the TagTrees and represents a very clever
solution to the limitation problem.

40. https://en.wikipedia.org/wiki/Filesystem_in_Userspace – retrieved on 2012-08-
17.

138

https://en.wikipedia.org/wiki/Filesystem_in_Userspace

5.9 Comparing tagstore to Other Solutions

5.8.4 No Adding, Deleting, or Renaming in TagTrees

The implementation of tagstore could theoretically allow items to be stored
(or removed) directly in the TagTrees. Unfortunately, this requires tagstore
to monitor all folders within the TagTrees hierarchy. At least Apple’s os x

limits the number of folders that can be monitored to 256. This number is
exceeded very quickly. Therefore, tagstore is only able to recognize new,
deleted, or renamed items within the storage folder as described in Sec-
tion 5.6.5 and Section 5.6.6.

People using tagstore are able to store, delete, and rename items within
the storage folder. Within the TagTrees, users are able to navigate to items
using associations and open items.

5.9 Comparing tagstore to Other Solutions

There are a number of solutions on the market that address similar issues
like tagstore does. In G. Binder (2012, in German) they were evaluated in
detail.

• TagLauncher 41

• TagEverything 42

• Tabbles 43

• tag2find 44

• TaggedFrog 45

• TaggTool 46

• WinDream
• Tagsistant 47

41. http://www.taglauncher.com/ – retrieved on 2012-09-02.
42. http://ww35.popularproductivity.com/tag-everything.html – retrieved on 2012-

09-02.
43. http://tabbles.net/ – retrieved on 2012-09-02.
44. http://www.tag2find.com/ – retrieved on 2012-09-02.
45. http://lunarfrog.com/ – retrieved on 2012-09-02.
46. http://www.taggtool.com/ – retrieved on 2012-09-02.
47. http://www.tagsistant.net/ – retrieved on 2012-09-02.

139

http://www.taglauncher.com/
http://ww35.popularproductivity.com/tag-everything.html
http://tabbles.net/
http://www.tag2find.com/
http://lunarfrog.com/
http://www.taggtool.com/
http://www.tagsistant.net/

5 tagstore Implementation

• Punakea 48

• Tags 49

• TagFS 50

• LabelFS 51

48. http://www.nudgenudge.eu/ – retrieved on 2012-09-02.
49. http://www.caseapps.com/tags/ – retrieved on 2012-09-02.
50. https://github.com/marook/tagfs/wiki/ – retrieved on 2012-09-02.
51. http://code.google.com/p/labelfs/ – retrieved on 2012-09-02.

140

http://www.nudgenudge.eu/
http://www.caseapps.com/tags/
https://github.com/marook/tagfs/wiki/
http://code.google.com/p/labelfs/

Did I disappoint you?
Or leave a bad taste in your mouth?

One
U2

6 Evaluation

The design and implementation of a new method was described in the
previous chapters. But what about its effect on pim? Are there positive or
negative implications? How does this new method compare to people’s
current situation? This chapter gives a summary of the scientific evaluation
of tagstore.

Long-term users provided valuable input not only for the development
phase. Two formal experiments were conducted: the first one compared
the traditional folder method to tagstore in the lab with a short time span
between filing and re-finding tasks. The second formal experiment was
similar to the first, one but with a two week pause between filing and re-
finding tasks, more files, more test persons, and an enhanced test design.

The results of the experiments showed tremendously positive user feed-
back for tagstore. In general, objective performance measure were incon-
clusive. Thus, objective results and subjective feedback were contradictory
in many issues. User acceptance, however, was very positive for tagstore.

141

6 Evaluation

6.1 Strategy

There are many different strategies to choose from when evaluating pim

methods or tools. Evaluation methods involving test persons (tp) can be
classified in many different ways: 1

• temporal

– short-term evaluation
– long-term evaluation

• moderation style

– moderated tasks test (typically: formal experiment)
– co-discovery
– unmoderated tasks tests
– free-form tests

• level of interaction

– interviews
– questionnaires
– doing a set of pre-defined tasks
– using tool with own requirements (typically: long-term studies)
– usage studies (typically: logging data)
– A/B tests

• usage style

– tps silently doing tasks
– tps talking while doing tasks (thinking aloud tests)

• . . .

In many cases, short-term evaluation is done by inviting test persons (tp)
into a laboratory and asking them to do a set of pre-defined tasks. Such
formal experiments have the advantage that the situation can be controlled
to a maximum possible extent. I decided to perform laboratory experiments
in order to evaluate several things:

1. Objectively compare tagstore to usual filing and navigation in folder
hierarchies.

1. Dumas and Redish, 1999; Rubin and Chisnell, 2008; Mathis, 2011.

142

6.2 Informal Feedback from Long-Term Users

2. Obtain subjective feedback on the method and the implementation.
3. Detect usability issues in order to further optimize the implementa-

tion.

6.2 Informal Feedback from Long-Term Users

Starting at the development phase, several people volunteered to act as
beta testers and long-term testers. It is very crucial to obtain long-term
experience from outside the development team, as stated in Section 3.5.2.
Direct feedback from long-term testers provided valuable input not only
for the design phase, but also gave us insight into the practical implications.
This feedback was used to form a collection of best practices (Section 5.7)
and faqs, including:

Multimedia Content Users reported that tagstore seems to be an interest-
ing method to manage multimedia content such as movies. Multi-classification
for genre, actors, and so forth is important for these kinds of items.

Business and Sharing In the office, most people have to work on network
drives whose structure is standardized in some more or less strict fashion.
The implementation of tagstore is single-user, single-system and, therefore,
not suitable for managing those kind of business items yet.

Misc, Sundries, . . . Folders, which contain a composite mixture of all
kinds of things, seem to be very suitable for tagstore. With multi-classifica-
tion, a user is able to conquer this chaos.

Download Folders Download folders for browsers seem to be very suit-
able for tagstore. This is quite similar to the previous paragraph: very dif-
ferent kinds of files are stored there. Long-term users enjoy the possibility
to browse through their downloads using associations.

143

6 Evaluation

Tags People using tagstore for a longer period of time report that their
tagging vocabulary usually develops over the first weeks. After that, they
restrict themselves to a smaller set of tags:

} My number of tags did not grow any more: I use a tag set
with about 20–30 tags, but the different combinations make it
easy for re-finding files.

} For me, tagstore was a new method for storing and find-
ing files. It took me several months to really get into it. In the
beginning, [I was using] only [the storage] folder, then really
[started] with [the navigational structures of] tagstore. It is a
new method, which can change the way of finding and refinding
files, but whether or not it will become a solution for everybody
cannot be stated.

I am very sad, that on my business computer I currently have
Windows 7 without administrator permissions. So for now I
cannot use tagstore [on my business computer].

} Different file types were used with several applications like
image editors, music players or file browsers with tagstore with-
out any problems. Furthermore, the additional dialog after sav-
ing or copying a file to the storage directory was not disturbing
or very time consuming.

Looking for files in the folder hierarchies created by tagstore
from tags shows its power. This means that it is very easy and
time saving to re-find files. However, with the growing num-
ber of tags it could become a bit confusing because of the large
number of directories at the top level of the descriptions or cat-
egories directory.

So it is worth saying that tagstore is a very big help for bring-
ing different files in order. Due to that, it has been great for
collecting files which are hard to classify in only one directory.

144

6.3 Formal Experiment 1

Integration One long-term user of tagstore who was running gnu/Linux
expressed his desire that tagstore should be more integrated into his fa-
vorite file browser and web browser.

6.3 Formal Experiment 1

One of the most interesting things about a new method is how it per-
forms when compared to the status quo. Therefore, a study which com-
pares tagstore with the most frequently used method for filing and brows-
ing items using Windows Explorer was designed. This direct comparison
should yield both objective measures and subjective feedback.

The first formal experiment with tagstore took place in January 2011 and
is described in detail in De Vocht et al. (2012). All relevant data concerning
this experiment is published on github 2. The preliminary results of this
study were published in Voit, Andrews, and Slany (2012b).

6.3.1 Methodology

This study was designed as a repeated measures (within-groups) formal ex-
periment. A set of 18 German-speaking 3 test persons (tp) was split into two
random groups. Two conditions were tested: condition A was the Windows
Explorer condition and condition B was the tagstore condition. Group 1

started with condition A first and did condition B afterwards. Group 2

started with condition B first and did condition A afterwards. This coun-
terbalancing was done to compensate for learning or fatigue effects.

2. https://github.com/novoid/2011-01-tagstore-formal-experiment – retrieved on
2012-08-21.

3. Since the experiment took place in Graz/Austria, tps spoke German. The tagstore soft-
ware was configured to show a German interface. All user quotes in this document
have been translated from German to English.

145

https://github.com/novoid/2011-01-tagstore-formal-experiment

6 Evaluation

The tasks began with reviewing thirty test files 4 on general topics. These
test files were filed under both conditions and re-found under both con-
ditions by every tp. Task times were measured, screen capture, user cam,
and a room camera recorded the experiment. Sound recording was done
as well.

One test user (not part of the 18 tps) did a pilot test beforehand to test the
experimental setup, tasks, equipment, process, and instructions.

All tps were given fictitious identities (pt, tp01, tp02,. . . , tp18). Only one
internal document contained the mapping of real names to the test ids, to
ensure protection of the volunteers’ identities.

Each tp filled out a background questionnaire (see Figure 6.1 and Fig-
ure 6.2). During the experiment, performance data and completion rates
were collected for each task. After finishing all tasks, an interview was con-
ducted to gather spontaneous feedback. The first interview question was
an open one (“How was it?”) to encourage copious feedback. The final part
consisted of filling out a feedback questionnaire (see Figure 6.3), where the
tps could express their opinion in a structured way.

Procedure

Group 1 had the following procedure:

1. The tp enters the test room.
2. The facilitator welcomes the tp and guides the tp to a table aside (not

the one with the test computer).
3. The facilitator reads an orientation text which explains the rough pro-

cedure.
4. The tp is asked to fill out a background questionnaire form (see Fig-

ure 6.1 and Figure 6.2).
5. The tp is asked to sign the consent form.
6. The facilitator asks the tp to come to the table with the test computer.
7. The tp is asked to review the thirty test files (task 1).

4. The set of test files consisted of ten articles, ten files consisting of graphical content, and
ten photographs.

146

6.3 Formal Experiment 1

8. The facilitator demonstrates filing of demonstration files into a new
folder hierarchy.

9. The tp is asked to file the thirty test items into a folder hierarchy that
has to be created by the tp (task 2).

10. The facilitator shows an instruction video 5 which explains the basic
usage of tagstore to the tp.

11. The tp is asked to file the thirty test items using tagstore (task 3).
12. The facilitator thanks the tp and the tp leaves the test room for a

minimum of fifteen minutes to take a break.
13. The facilitator gets the tp back from the break and guides the tp to

the table with the test computer.
14. The tp is asked to re-find six selected 6 files (one by one, using Win-

dows Explorer) within the folder hierarchy, which was made by the
same tp in task 2 (tasks 4–9).

15. The tp is asked to re-find six selected files 7 within the TagTrees folder
structure of condition B using Windows Explorer (tasks 10–15).

16. The facilitator starts the interview phase by asking “How was it?”

• In the interview phase, the facilitator tries not to steer the tp

into any direction. If the tp stops talking, the following kinds of
questions were asked: “Did you notice anything positive?” “Did
you notice anything negative?” “Do you want to say something
else?”

17. The facilitator ends the interview phase and guides the tp back to the
other table.

18. The tp is asked to fill out the feedback questionnaire (Figure 6.3).
19. The facilitator thanks the tp and guides the tp to the door.

Group two had a similar procedure, only with the swapped conditions:
task 2↔ task 3 and tasks 4–9↔ tasks 10–15.

5. https://github.com/novoid/2011-01-tagstore-formal-experiment/tree/master/
experiment_data/tagstore_introduction_video – retrieved on 2012-08-21.

6. The descriptions of three files were rather similar to the file name. The descriptions of
the other three files were more vague.

7. The same set of selected files as in the previous six tasks for condition A.

147

https://github.com/novoid/2011-01-tagstore-formal-experiment/tree/master/experiment_data/tagstore_introduction_video
https://github.com/novoid/2011-01-tagstore-formal-experiment/tree/master/experiment_data/tagstore_introduction_video

6 Evaluation

Figure 6.1: An example background questionnaire from TP05, page one. The header infor-
mation was filled out by the facilitator, the questionnaire was filled out by the
test persons.

148

6.3 Formal Experiment 1

Figure 6.2: An example background questionnaire from TP05, page two. Originally, this
was on the back side of part one.

Test Persons

The tps were recruited on various occasions. I gave many talks about my re-
search work at business meetings, and BarCamps 8 in Graz 9 and Vienna 10.
Using these events and modern social media I was able to encourage people
to send me an email and fill out a short online survey for basic informa-
tion about their computer background. So far, I received emails from 168

interested German-speaking persons 11 and 116 persons 12 from all over the
world. 13

Together with friends and colleagues, I was able to recruit 18 persons
(15 male, 3 female) for the two days of testing. No test person volunteering
for the experiment received any payment.

8. https://en.wikipedia.org/wiki/BarCamp – retrieved on 2012-08-21.
9. http://barcamp-graz.at/ – retrieved on 2012-08-21.

10. http://www.barcamp.at/UxCamp_2010 – retrieved on 2012-08-21.
11. 128 persons have completed the online questionnaire.
12. 60 persons have completed the online questionnaire.
13. The numbers were derived on 2012-08-22.

149

https://en.wikipedia.org/wiki/BarCamp
http://barcamp-graz.at/
http://www.barcamp.at/UxCamp_2010

6 Evaluation

Figure 6.3: An example feedback form from TP05. The header information was filled out
by the facilitator, the rest of the form was filled out by the test persons.

150

6.3 Formal Experiment 1

Figure 6.4: The test environment with the observing person on the left-hand side (oper-
ating logging devices, room camera, and further equipment), the test person
working on the test computer, and the facilitator on the right-hand side. In the
foreground, there is the table for filling out questionnaires and feedback forms.

The age of the tps ranged from 21 to 40 with a median of 28. The average
amount of computer experience was 16.28 years. The average computer
usage time per week was 45.22 (according to the answers to the background
questionnaire). Most of the tps were highly educated: only two of them did
not have a university degree. Half of the tps did not use tagging methods
before.

Test Environment

Room In the test room there were only the tp, the facilitator and one
or two persons handling the recording equipment. Outside the test room,
there was an additional person who took care of the tps arriving, waiting,
or leaving. Inside and outside the room, the tps were offered non-alcoholic

151

6 Evaluation

beverages and snack food. Besides the computer and recording equipment,
there were three tables: observer/recording, table for filling out question-
naires/feedback, and the test computer table.

Hardware The test computer was a Sony Vaio Core 2 Duo notebook with
a display resolution of 1280×800 on 13.3 inches. Video recording was done
using a digital camcorder from Sanyo (Xacti hd1010). The observing person
was using a notebook for taking notes and had a standard tft display
which showed the mirrored display content from the test notebook.

Software For recording the sessions, Morae v3.2.1 14 was used: Morae
Recorder on the test computer, Morae Observer on the computer of the
observing person, and Morae Manager to post-process the recordings. The
test computer was running an English 15 version of Windows 7 (32bit) with
Internet Explorer 7.0. For the experiment, tagstore 16 was used with one tag
line and no controlled vocabulary.

Limitations and software issues Due to the development stage of tag-
store, this version lacked some features which are described in Chapter 5.
There was no tag cloud, no advanced recommendation system, no online
help system, and no set-up assistant. Instead of the advanced recommen-
dation system, this version had a simple recommender, which showed a
set of tags directly below the tag line, as shown in Figure 6.5. The sugges-
tions were clickable and derived from the most recently and the most often
used tags of the user. Unfortunately, a bug was discovered in the software:
when a file containing a German umlaut 17 was added to tagstore, this item
re-appeared in the list of untagged items. Another bug in the tagstore soft-
ware caused the background process to crash when the tagging dialog was
closed using the red “x” icon in the upper right position. All time ranges

14. http://www.techsmith.com/morae.html – retrieved on 2012-08-22.
15. The test laptop with Morae Recorder installed was running an English version of Win-

dows. Our German-speaking tps did not show any particular issues because of the
different language.

16. The tagstore software used was Rev. 226 from 2011-01-13T15:12.
17. German umlauts are: ä, Ä, ö, Ö, ü, and Ü.

152

http://www.techsmith.com/morae.html

6.3 Formal Experiment 1

Figure 6.5: A screenshot of tagstore rev. 226 showing three untagged files, an empty tag
line, and four tag recommendations.

where bugs distracted the attention of the tps were removed from the re-
sulting data set (distractions).

Training Since all tps were familiar with the Windows operating system,
using Windows Explorer should not lead to any problem. Nevertheless,
the facilitator demonstrated the task of selecting files and creating a folder
hierarchy to file those items. No tp was familiar with the tagstore software
prior to the experiment. A training screencast video 18 of tagstore was cre-
ated, showing the basic principles and features. This way, all tps learned
tagstore in the exact same fashion, not favoring any tp by different expla-
nation. After the training video, adding demo files to the installed tagstore
instance was shown by the facilitator. The set of demo files differed from
the test files completely.

Data Preparation Each tp had the following situation at the beginning of
the session:

18. https://github.com/novoid/2011-01-tagstore-formal-experiment/tree/master/
experiment_data/tagstore_introduction_video – retrieved on 2012-08-21.

153

https://github.com/novoid/2011-01-tagstore-formal-experiment/tree/master/experiment_data/tagstore_introduction_video
https://github.com/novoid/2011-01-tagstore-formal-experiment/tree/master/experiment_data/tagstore_introduction_video

6 Evaluation

• Windows 7 (English) with an external standard computer mouse at
the side preferred by the tp.
• A folder on drive letter M: containing three demonstration files which

were used by the facilitator to demonstrate how to file in a folder
hierarchy or tagstore.
• An empty drive with letter O:, where the tps had to create their folder

hierarchy 19.
• On drive letter T: there was an empty tagstore store 20.
• An open Windows Explorer window showing drive letter M: contain-

ing thirty test files 21 as shown in Figure 6.6.

On each new starting session, several scripts prepared the situation de-
scribed above. When a tp finished the first session (tasks 1–3) the current
state of the folder drive and the tagstore drive were archived using scripts.
Before a tp returned from the session break, the corresponding situation
from the previous session was restored using scripts.

Data Processing

The logs from the Morae software were not usable for the purpose of eval-
uation. On the one hand, tps did things we could not pre-define within
the Morae configuration, so the Morae summaries for task times were not
correct. And on the other hand, the person on the observing interface was
not able to follow short-term actions of the tps in time. That resulted in
time logs which were off by a high percentage of the actual task time.

Therefore, for post-processing the video logs of the sessions, a new ap-
proach was developed. The team had to analyze the screencast videos from
the tasks in detail. Each spoken word was transcribed into text files. For
task action and time logs I developed deterministic finite automatons (dfa)
and a simple logging language. The dfas mapped the most important states
of the tps.

19. The letter “O” was chosen because “folder” translates to the word “Ordner” in German.
20. tagstore was configured to show one tag line and no cv (“My Tags”).
21. The set of test files consisted of ten articles, ten files consisting of graphical content, and

ten photographs.

154

6.3 Formal Experiment 1

Figure 6.6: Windows Explorer showing the test files and the mapped drives for test files
(M:), the folder hierarchy (O:), and tagstore (T:).

The video logs were written in text files that contained one line per log
entry. Each line started with a time stamp which consisted of the absolute
minute and second within the video file. Following the time stamp, an
event shortcut described what happened. Depending on the event shortcut
name, a set of parameters had to be added. Some event shortcuts did not
require any parameter and some event shortcuts had optional parameters
at the end of the line.

Figure 6.7 visualizes the data processing from the manual video transcript,
to the event shortcut log, to the parser which derives result files, and sepa-
rate script files deriving additional result files.

155

6 Evaluation

00:03 sott

00:05 m2t 7

00:17 ta 3

00:21 ta 2

. . .

parser.py

script.sh

Figure 6.7: Data processing: Manual transcriptions of the video screencasts resulted in
the event shortcut log files. Dedicated parsers processed these log files and
generated a number of csv result files. Shell scripts derived additional result
files.

For filing in folders, the states of the dfa were:

start Starting state before the first tp action. When a tp interacted with the
computer for the first time, the task time for the next state started.

picking The tp selected files which were added to the folder hierarchy.
filing The tp managed the folder hierarchy and filed the selected test files.
end When a tp decided that the task was finished, logging of the task time

stopped.

Figure 6.8 shows the dfa for the folder-filing task of the first formal exper-
iment. It contains the states as circles and the event shortcuts as transition
rules between states.

sotf . . . start of task: filing in folders
Example: 5:55 sotf

o . . . changing current view to drive O: (folder)
Example: 5:55 o

m2o n . . . move n selected files from M: to O:\
Example: 5:59 m2o 3

m2f n folder . . . move n selected files from M: to a sub-folder on O:

Example: 6:05 m2f 2 Business

m . . . change current view to drive M: (test files)
Example: 6:09

156

6.3 Formal Experiment 1

filingpicking
m2o

start

end

NTD1 NTD2

ff

mkf
renf

delf

m2f

eo
tf

sotf o

m

mvf

eotf

Figure 6.8: The deterministic finite automaton (dfa) for the filing into a folder hierarchy
task for the first formal experiment. The tps started at the file-picking state
(selecting test files), switched to the filing state (creating and managing the
folder hierarchy) and back to the picking state or end state. For simplicity, the
two states which start with “ntd” summarize the non-task distractions and are
shown in detail in Figure 6.10.

mvf n dest . . . move n folders into the folder named dest

Example: 6:12 mvf 3 "sports leisure"

ff n dest . . . move n files from a sub-folder on drive O: to the dest

folder on drive O:

Example: 6:19 ff 4 vacation

delf folder . . . delete folder named folder

Example: 7:14 delf "education"

renf from to . . . rename the folder from to to

Example: 7:20 renf university education

mkf folder . . . create the folder named folder

Example: 7:22 mkf Austria

eotf . . . end of task: filing in folders
Example: 8:11 eotf

For tagging with tagstore, the states of the dfa were:

start The starting state before the first tp action. When a tp interacted with
the computer for the first time, the task time for the next state started.

picking The tp selected files which were added to the store.
tagging The tp was facing the tagstore dialog.

157

6 Evaluation

taggingpicking

m2t

start

end

NTD1 NTD2

ta

td
tc

tp

eoteo
tt

sott

t m

Figure 6.9: The deterministic finite automaton (dfa) for the tagging into a folder hierarchy
task for the first formal experiment. The tps started with the file-picking state
(selecting test files), switched to the tagging state (adding files to tagstore) and
back to picking state. For simplicity, the two states which start with “ntd”
summarize the non-task distractions and are shown in detail in Figure 6.10.

end When the last tagstore dialog window closed, the task was finished,
logging of the task time stopped.

Figure 6.9 shows the dfa for the tagging task using tagstore. It contains the
states as circles and the event shortcuts as transition rules between states.

sott . . . start of task: filing in tagstore
Example: 14:12 sott

m2t n . . . move n files from M: (test files) to T:\tagstore\Ablage 22

Example: 14:22 m2t 5

ta n . . . assign n tags to an item 23

Example: 14:27 ta 3

tp . . . usage of tag which was proposed by the recommender
Example: 14:28 tp

tc . . . usage of the tag completion feature
Example: 14:31 tc

td . . . tp used at least one default tag 24

Example: 14:33 td

22. Ablage is the name of the storage folder in a German tagstore.
23. Tagging of multiple items was not implemented in this tagstore version.
24. Default tags are the tags from the previous item.

158

6.3 Formal Experiment 1

eot . . . end of tagging; the tagstore dialog closes
Example: 14:34 eot

t . . . change to drive T: (tagstore)
Example: 14:36 t

m . . . change to drive M: (test items)
Example: 14:41 m

eott . . . end of the task; when the last item was tagged, the task time
stopped
Example: 14:59 eott

Distraction event shortcuts were used in all filing sessions (folders and
tagstore):

ib . . . begin inspecting file(s) by the tp

Example: 10:02 ib

ie . . . end inspecting file(s)
Example: 10:07 ie

ct comment . . . begin of a comment by the tp

Example: 10:09 ct "Where am I now?"

cf comment . . . begin of a comment by the facilitator
Example: 10:12 cf "Please ignore this bug."

cl comment . . . begin of a comment by the person who was logging
Example: 10:16 cl "Please start the screencast recording"

ce . . . end of the previously started comment (by anyone)
Example: 10:28 ce

fb comment . . . facilitator takes over control (due to technical issue)
Example: 10:48 fb "tagstore but with umlaut"

fe . . . end of facilitator taking over control
Example: 10:59 fe

The re-finding process was much simpler. Since the tasks were rather short,
we ignored all distractions that might have occurred in between. The facil-
itator asked for a file and when the test person started to interact with the
computer, the task time was started. When the correct file was opened and
its content was visible on the screen, the task time was stopped. Figure 6.11

shows the dfa of the re-finding tasks.

tf taskn time . . . task number taskn finished successfully within time

159

6 Evaluation

NTD

commenting
facilitatorinspecting

ib
ie

ct cf cl ce fb

fe=̂

Figure 6.10: Distractions, which were not related to accomplishing the tasks, were sum-
marized with the term “ntd”. We had three different distraction states: “in-
specting” (tps opening files and re-inspecting the content), “commenting” (tp,
facilitator, or logging person speaking), and “facilitator” (facilitator took over
control of the computer; mostly for fixing technical issues). In order to be able
to compare the methods, all distraction times (based on exact measures of
seconds) were removed from the result set.

seconds (in deciseconds, a tenth of a second)
Example: 1:05 tf 5 2.4

tc taskn time comment . . . task number taskn was cancelled after time
with a comment

Example: 3:06 tc 7 28.3 "TP gave up"

The extraction of those detailed logs was very time-consuming. The logs
were separated in different files: one file for the filing task of the folder
condition, one file for the filing task in the tagstore condition, one file for

refind

tc

tf

Figure 6.11: The dfa for refinding is a very simple one because only (short) task comple-
tion times and task cancel events were extracted.

160

6.3 Formal Experiment 1

re-finding within folder condition, and one file for re-finding within tag-
store.

A Python compiler was developed which parsed the log files and derived
files in csv format. The compiler also computed absolute task times with-
out distractions.

All logging files, the derived csv files, and the parser script were published
on the github repository. 25

6.3.2 Results

As mentioned in the previous section, all raw data files, parsers, scripts,
and result files are available online. 25 In the following section, all references
to item names in the git repository are denoted with footnotes like this 26.

Unless otherwise stated, the following applies to the statistical results:

• All distraction times (as described in the previous section) were re-
moved from the data set.
• A “paired t-test” was used to determine statistical significance (Lewis

and Sauro, 2012, Chapter 5, example 2).
• A confidence interval of 0.95 was used.
• Details of the statistical results can be found in the git repository. 27

Success Rate

The success rate was 100 percent 28. There was one exception, where it
was not possible to re-find items because of a technical issue. These two
incidents were removed from the evaluation results, because they were not
re-finding issues of the tp.

25. https://github.com/novoid/2011-01-tagstore-formal-experiment – retrieved on
2012-08-22.

26. git: an example file.txt.
27. git: results.org.
28. git: refinding folders.csv refinding tagstore.csv.

161

https://github.com/novoid/2011-01-tagstore-formal-experiment

6 Evaluation

Measure Folders tagstore
Filing Time (all) 451.35± 35.78 542.47± 58.14

Time (fast-perf.) 385.75± 20.93 337.38± 13.59
Re-finding Clicks (all) 3.17± 0.50 2.32± 0.26

Time (all) 25.05± 1.58 26.03± 1.85
Time (fast-perf.) 34.38± 3.83 33.75± 1.98

Table 6.1: FE1: Filing times, re-finding times and re-finding mouse clicks with their mean
values and standard errors. Mean values show that filing in folders was faster,
whereas re-finding performance did not vary between the conditions. The
number of mouse clicks when re-finding showed a significant difference with
p < 0.005 (t(16) = 3.31).

Task Performance

Table 6.1 shows a summary of the task times for filing and re-finding for
both conditions.

Filing in folder condition was faster than filing in tagstore condition, al-
though not statistically significantly with p > 0.11 (t(16) = −1.69). Fig-
ure 6.12 shows a bar chart of the filing performance of all tps and Fig-
ure 6.13 visualizes the same data in a box-and-whisker diagram (in short:
boxplot).

Re-finding in both conditions was very similar with p > 0.91 (t(16) =
−0.11).

In general, re-finding the first file took longer than the other five files. 29

However, for re-finding of file two to six (Figure 6.14, Figure 6.15) there is
still a statistically significant difference (p =̃ 0.5 with t(16) = −0.63).

The number of mouse clicks 30 used to re-find files differs with p < 0.005
(t(16) = 3.31, Table 6.1). Re-finding with tagstore requires statistically sig-
nificant less mouse clicks.

In Figure 6.16, there is a clearly visible gap between tp 3 and tp 15. The set
of tps with faster performance compared to tp 3 is also the group of the

29. git: results.ods.
30. git: results.ods.

162

6.3 Formal Experiment 1

Figure 6.12: Filing performance for both conditions. The large standard deviations are visi-
ble in the variations between the tps. There is also no clearly visible advantage
for one condition over the other.

nine fastest performing tps in the folder condition. This sub-group of tp 2,
4, 5, 9, 11, 14, 15, 16 is equally divided between the two groups. Hence, this
sub-group is a valid sub-group for further analysis. This set of tps is called
“fast performers”.

Within the fast performer group, filing performance in the two conditions
is the other way around: filing in tagstore is faster within the fast perform-
ers group in absolute numbers. But this is not statistically significant with
p=̃0.11 (t(7) = 1.83). The p-value is similar to the one from filing by all
tps, but favors the other condition. Figure 6.17(a) shows the bar chart of
the filing performance of the fast performers.

For re-finding files, there is no difference to the set of all tps: with p > 0.90
(t(7) = 0.13) the re-finding performance does not differ between condi-
tions, as visualized in Figure 6.17(b).

163

6 Evaluation

●

●

folders tagstore

20
0

40
0

60
0

80
0

10
00

fil
in

g
tim

es

Figure 6.13: A boxplot of the filing tasks: in general, the folder condition was faster com-
pared to the tagstore condition for filing, but not statistically significant stan-
dard deviation. The absolute times for the tagstore condition varied to a
greater extent.

Artifacts

During the tasks, each tp created two sets of artifacts: the folder hierarchy
containing the test files and the status of tagstore after tagging the test
files.

On average, a tp used 9.1 characters per folder name 31. Each test file is
located within one or more folders that form the path to this file. The num-
ber of (parent) folders to this file is a similar measure to the number of tags
associated to a file in tagstore. The average number of folders to a file is
1.7. 32 When filing in tagstore, a tp used 2.7 tags per file on average 33 with
an average tag length 34 of 7.6.

31. git: additional statistics.org.
32. git: folders combined list of average nr of parentfolders per TP - average.csv.
33. git: average nr of tags - general value.csv.
34. git: additional statistics.org.

164

6.3 Formal Experiment 1

Figure 6.14: Re-finding performance for both conditions for file 2–6.

Figure 6.18 shows a box-and-whisker diagram (in short: boxplot) which
compares the list of number of unique folders created by the tps 35 and the
number of unique tags of the tps 36. It is obvious that the tps used far less
different folder names than different tag names.

When comparing the average length of folder names 37 to the average length
of tags 38 in Figure 6.19, the difference of the average categorization strings
is visualized in more detail: tags tend to be slightly shorter than folder
names.

The average number of (parent) folders to a file 39 compared to the average
number of tags per file 40 is a measure on how many categories are “as-

35. git: folders number of unique per TP.csv.
36. git: tags number of unique per TP.csv.
37. git: folders without path - lengths.csv.
38. git: tags concated - raw tags single unique - lengths.csv.
39. git: folders list of average nr of parentfolders per TP.csv.
40. git: average nr of tags - list.csv.

165

6 Evaluation

folders tagstore

15
20

25
30

35
40

re
−

fin
di

ng
 ti

m
es

Figure 6.15: A boxplot of the re-finding tasks: this is a comparison of the re-finding times
in the folder condition to the tagstore condition reduced to file 2–6. The per-
formances were very similar in both conditions.

sociated” to a file. Figure 6.20 shows that in general there are more tags
associated to a file than (parent) folders to a file.

Feature Usage

The detailed transcriptions contain feature usage information. As a rough
measurement, the number of tps that used convenience features are listed
in Table 6.2.

From these three features, the default tag feature and the tag completion fea-
ture were used by the majority of tps. The tag recommendation feature was
used by five tps. The fast performers group did not differ in a clear way:
they were using these features in a similar way to the non-fast performing
tps.

166

6.3 Formal Experiment 1

Figure 6.16: Filing performance within tagstore sorted by descending performance. There
is a gap between tp 3 and tp 15. The sub-group of tp 15 to 2 is called “fast
performers”.

(a) Filing performance of the fast perform-
ers group: the absolute numbers show that
filing was faster in the tagstore condition
but this was not statistically significant.

(b) Re-finding performance of the fast per-
formers group. No significant difference
could be found.

Figure 6.17: Filing and re-finding performance of the fast performers group.

167

6 Evaluation

●

●

●

folder condition tagstore condition

20
40

60
80

10
0

un
iq

ue
 o

cc
ur

re
nc

es
 p

er
 T

P

Figure 6.18: A boxplot comparing the number of (unique for each tp) folders with the list
of tags (unique for each tp) of the tps. There were many more different tags
used than different folder names created.

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

folder condition tagstore condition

0
5

10
15

20
25

30

nu
m

be
r

of
 c

ha
ra

ct
er

s

Figure 6.19: A comparison of the lengths of folder names and tag names. Tag names are
slightly shorter than folder names.

168

6.3 Formal Experiment 1

folder condition tagstore condition

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

av
er

ag
e

nu
m

be
r

of
 a

ss
oc

ia
te

d
ca

te
go

rie
s

Figure 6.20: The number of associated (parent) folders of a file-path compared to the num-
ber of tags attached to files shows that there are more tags associated to a file
than there are folders.

Feature Nr. of tps List of tps
default tags 14 1, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18

tag completion 12 1, 3, 4, 5, 7, 8, 11, 12, 14, 16, 17, 18

tag recommender 5 1, 4, 5, 15, 18

Table 6.2: Feature usage of default tags (re-use of one or more tags from the previous
item tagged), tag completion (completion of already known tags), and tag rec-
ommender (tags proposed by the recommender system below the tag line). tps
from the fast performers group are emphasized.

169

6 Evaluation

Feedback question p-values folder σ±SE tagstore σ±SE
preference filing p< 0.03 3.61± 0.33 4.61± 0.27
preference re-finding p< 0.001 3.17± 0.38 5.06± 0.17
filing speed p > 0.13 3.17± 0.33 3.94± 0.39
re-finding speed p< 0.01 3.22± 0.42 4.83± 0.27
managing image files p< 0.001 3.33± 0.35 3.44± 0.33
managing text files p< 0.006 4.89± 0.21 4.67± 0.23

Table 6.3: FE1: Feedback questions showed a significant tendency of user preferences to-
wards tagstore (Scale 0–6, higher values indicate more agreement with the state-
ment; Wilcoxon test and confidence interval of 0.95). The tps statistically signif-
icantly preferred the tagstore condition for all questions except for filing speed.

Interviews

In the interview directly after the last task, the tps generally showed a pos-
itive reaction to tagstore. Some tps mentioned that they would rather have
used their own files instead of test files. Some tps said that the folder hier-
archy was too simple and the pause was too short so that they remembered
where they had put the files.

The positive aspects of multi-classification of tagstore was mentioned sev-
eral times.

Several tps reported that they would like to see a re-tagging feature and
that they wanted to see more tags in the recommender system. Multiple
tps mentioned the tag completion feature in a very positive way: although
they did not use it for actual completion, they liked it because the drop-
down box showed them important cues on tag names they had already
been using.

The complete German transcript of the interviews is contained in De Vocht
et al. (2012).

Feedback Questionnaire

The tps filled out a feedback questionnaire (see Figure 6.1 and Figure 6.2).
Results from those feedback questionnaires, as shown in Figure 6.3, draw

170

6.3 Formal Experiment 1

a positive picture of tagstore: all but one question showed a statistically
significant positive result for the tagstore condition.

The question number thirteen of this questionnaire was: “All in all, which
condition would you prefer?” Four of the tps answered with the folder con-
dition and 14 tps answered with the tagstore condition. This an 78 percent
majority for the tagstore condition.

6.3.3 Discussion

The objective measures show that, in general, filing into folders performs
faster (not significantly). Within the sub-group of fast performers, filing
files with the tagstore condition was faster (not significantly). For filing,
there is no clear winner.

Being in the fast performers group does not seem to be related to tagging
experience: only three of the nine fast performers have used tagging before.
The nine tagging-savvy people actually performed slower on average.

Re-finding performance was more or less the same for both conditions.
Although re-finding in the tagstore condition required significantly less
mouse clicks to get to the test files.

Figure 6.20 shows an interesting aspect: due to the higher number of tags
compared to the number of (parent) folders per file, there are more as-
sociated terms within tagstore. This could be interpreted as an additional
re-finding benefit for items stored in tagstore: items are associated with a
richer set of metadata. This way, the user gets more associative cues within
tagstore.

Positive aspects like additional re-find cues or higher user acceptance are
not visible in the objective measures. Subjective feedback from the inter-
view phase and from the feedback questionnaire was very positive for
tagstore. Only one of the six directly-comparing questions did not show
statistically significant positive results for the tagstore condition. No tp en-
countered difficulties while working with this new method. The short in-
troduction video was enough to accomplish the tagstore tasks without any
issues. No tp showed explicit negative feelings towards this new method.

171

6 Evaluation

On the contrary: tps “defended” the tagstore implementation when they
were affected by the umlaut bug.

Convenience features such as re-using the tags of the previous item or
tag recommendation were used by almost all tps. Although those features
were not part of the introduction video, the users appreciated them. Even
though only five tps used the tag completion feature for completing tags,
it was mentioned multiple times for being a great help on tagging. Tagging
systems should provide similar convenience features to ease the process of
tagging.

Summarizing the results, the tagstore implementation does not show any
clear advantages or disadvantages when compared to traditional filing in
folder hierarchies. However, with its enhanced possibilities for re-finding
files (using significantly less mouse clicks) and its great user acceptance,
tagstore is a clear benefit for users.

6.4 Formal Experiment 2

The previous section described the first formal experiment conducted with
tagstore. It compared filing files with traditional methods and filing files
using tagstore. The results of that experiment showed some positive aspects
of tagstore. However, there were some issues with this experiment:

• The pause between filing and re-finding was too short.
• The number of test files was too small, resulting in very simple folder

hierarchies.
• The tagstore implementation showed minor bugs.
• The tps had to use artificial items and solve artificial tasks.

The last issue mentioned can only be addressed with field studies. The
other issues could be addressed by a slightly changed experimental de-
sign. Therefore, a second formal experiment was conducted. It took place
in April 2011 and is described in detail in Harzl et al. (2012). This sec-
tion does not contain all results that were derived from the data. For the
complete set of results regarding the feedback please refer to Harzl et al.

172

6.4 Formal Experiment 2

(2012). This thesis covers only the most important findings. All relevant
data concerning this experiment is published on github 41.

This experiment is very similar to the previous experiment, except for fol-
lowing differences:

• 27 test persons (tp) (instead of 18)
• 60 test files (instead of 30)
• two weeks pause between sessions (instead of a minimum of fifteen

minutes)
• re-finding of ten files (instead of six)

6.4.1 Methodology

This study was also a repeated measures (within-groups) formal experi-
ment. A set of 27 German-speaking tps was split into two random groups.
One pilot test was conducted before the experiment.

The methodology is the same as described in Section 6.3.1. The following
sections describe only the changed parameters.

Procedure

In order to optimize the experimental design, the procedure changed slightly,
and the background questionnaires were re-designed, as shown in Fig-
ure 6.21 and Figure 6.22.

We used sixty test files 42 on general topics. Reviewing of the sixty test files
was done in a separate room where tps could use a standard Windows
desktop computer. They were guided to this room and instructed by the
person welcoming the tps outside the experiment room. All tasks were
printed on paper and given to the tps. There was no time limit for the
reviewing task and no other person was in the reviewing room besides the

41. https://github.com/novoid/2011-04-tagstore-formal-experiment – retrieved on
2012-08-26.

42. The set of test files consisted of 20 articles, 20 files consisting of graphical content, and
20 photographs.

173

https://github.com/novoid/2011-04-tagstore-formal-experiment

6 Evaluation

Figure 6.21: An example background questionnaire from TP18, page one. The header in-
formation was filled out by the facilitator, the questionnaire was filled out by
the test person.

174

6.4 Formal Experiment 2

Figure 6.22: An example background questionnaire from TP18, page two.

175

6 Evaluation

tp. This procedure removed time pressure from the tps and should lead to
less task distractions through file inspection.

After the first session, we introduced an additional interview phase, which
collected insights from the filing tasks.

Finding and re-finding were split into two separate sessions with two weeks
in between. This longer period of time should lead to less recall of filing
decisions. In combination with the higher number of test files, this should
result in re-finding processes that rely more on the re-finding method and
less on memorized locations or tags.

We asked for ten test files to be re-found by the tps. Differences in re-
finding performance should be more dominant with more test files. There
were five questions with more detailed file descriptions and five questions
with vague descriptions of the items to be retrieved.

Filling out the feedback questionnaires was done in front of the test com-
puter. The feedback questionnaires for filing tasks are shown in Figure 6.23

and Figure 6.24. After re-finding tasks, the feedback questionnaires of Fig-
ure 6.25, Figure 6.26, and Figure 6.27 were used. The new design used the
semantic differential technique.

The (translated) posed questions were:

• Folders

Q1 How did you like using Windows Explorer hierarchy for filing
items in general?

Q2 How did you like using Windows Explorer hierarchy for filing
images?

Q3 How did you like using Windows Explorer hierarchy for filing
text items?

• tagstore

Q4 How did you like using tagstore for filing items in general?
Q5 How did you like using tagstore for filing images?
Q6 How did you like using tagstore for filing text items?

• General

Q7 Would you use tagstore on your own computer?

176

6.4 Formal Experiment 2

Figure 6.23: An example feedback form from TP18, filing, page one. The header informa-
tion was filled out by the facilitator, the rest of the form was filled out by the
test person.

Q8 Which condition would you prefer?

For the re-finding tasks, the same questions were posed with “filing” re-
placed with “re-finding”.

Likert scale questions were designed using a semantic differential. The at-
tributes for the filing tasks were the following, using a seven-point scale: 43

43. In this questionnaire, we changed positive and negative values in an alternating fashion
to avoid habituation effects between answers.

177

6 Evaluation

Figure 6.24: An example feedback form from TP18, filing, page two.

fast . . . slow
good overview . . . chaotic

simple . . . complex
supportive . . . time-consuming

In the re-finding questionnaires, the attributes were more detailed:

fast . . . slow
chaotic . . . structured
simple . . . complex

time-saving . . . time-consuming
good overview . . . bad overview

intuitive . . . unintuitive
familiar . . . unfamiliar
positive . . . negative

178

6.4 Formal Experiment 2

Figure 6.25: An example feedback form from TP18, re-finding, page one. The header in-
formation was filled out by the facilitator, the rest of the form was filled out
by the test persons. 179

6 Evaluation

Figure 6.26: An example feedback form from TP18, re-finding, page two.

180

6.4 Formal Experiment 2

Figure 6.27: An example feedback form from TP18, re-finding, page three.

Test Persons

The group of test persons for this experiment consisted of 27 persons (aged
32 on average, 33 percent female, 67 percent male) and was even more di-
verse than the previous group. Three persons could not make it to the sec-
ond session. Therefore, the results and evaluation only contain data from
24 persons. Gender distribution in the chosen groups was the same. All
but one of the tps were students or possessed a university degree. Average
computer usage per week was 46 hours with a very high standard devia-
tion of 22.

Half of the test persons were using Microsoft Windows as their main sys-
tem. 44 Tagging was used by 58 percent of the tps. Table 6.4 gives an overview

44. The rest of the tps used gnu/Linux (29 percent), os x (18 percent), and other systems

181

6 Evaluation

of the tps. More details on the participants can be found in Harzl et al.
(2012, Chapter 3.1).

Test Environment

Room The test room was a different one from the first experiment. The
arrangement of furniture and hardware was the same.

Hardware The computer used for screening the items was a desktop com-
puter: amd Sempron 1.66 GHz, one Gigabytes of ram, 1280×1024 tft screen
resolution, Microsoft Windows xp Home German (32Bit, sp3). All other
tasks were accomplished on a notebook: lenovo sl500, intel Core 2 Duo
2.26 GHz, two Gigabytes of ram, 1280×800 screen resolution on 15 inches,
Microsoft Windows 7 Enterprise German. The observing person used a
Sony Vaio notebook running Microsoft Windows 7 English.

Software The same Morae software version and setup was used in this
experiment. The tagstore 45 software had a bugfix for the German umlaut
bug. Once again, one tag line and no activated cv were used.

Training Training was done in the same neutral way as in the previous
experiment.

Data Preparation The drive letter for the test files was I:. The language
of the test computer was German. Figure 6.28 shows the tagstore filing
situation for a tp.

(3 percent).
45. The tagstore software used was Rev. 239 from 2011-04-01T14:46:06.

182

6.4 Formal Experiment 2

users group gender uses tagging OS IT filer/piler
TP01 1 m × other filer
TP02 1 f other filer
TP03 1 m other × piler
TP04 1 m win piler
TP05 1 m × other × piler
TP06 1 m × win filer
TP07 1 f win filer
TP08 1 m × other × filer
TP09 1 f other × piler
TP10 1 f win piler
TP12 2 m × win filer
TP14 2 m × other × filer
TP15 2 m × win × piler
TP16 2 m × other × piler
TP17 2 m win filer
TP18 2 f win filer
TP19 2 m × win × piler
TP20 2 m × other filer
TP21 2 m win × filer
TP23 2 f win filer
TP24 2 f × other piler
TP25 2 m × other × filer
TP26 2 f × win × piler
TP27 1 m × other × piler

Table 6.4: User groups and test users of the second formal experiment. [Source: Harzl et
al. (2012)]

183

6 Evaluation

Figure 6.28: A screenshot from the Morae screencast: a tp filing in tagstore.

Data Processing

The deterministic finite automatons (dfa) were simplified for this experi-
ment because the transcription process for the first experiment was more
detailed and took very long. This resulted in abandoning the explicit file
management state of the folder condition (Figure 6.29) and feature logs of
the tagstore condition (Figure 6.30).

The parser from the first experiment was able to parse the reduced set of
log language as well. All logging files, the derived csv files and the parser

184

6.4 Formal Experiment 2

filing

start

end

NTD

ff

mkfrenf
delf

eo
tf

sotf

mvf

m2o

m2f

Figure 6.29: The deterministic finite automaton (dfa) for the filing task into a folder hi-
erarchy for the second formal experiment. The file picking state (Figure 6.8)
was abandoned to simplify the transcription process. This also resulted in
less-detailed file management logs. The “ntd” state summarizes the non-task
distractions which are shown in detail in Figure 6.10.

taggingpicking

m2t

start

end

NTD1 NTD2

ta

eoteo
tt

sott

Figure 6.30: The deterministic finite automaton (dfa) for the tagging task into a folder
hierarchy for the second formal experiment. In contrast to Figure 6.9 of the
first experiment, feature usage and drive-changing transition rules were re-
moved to simplify the transcription process. The “ntd” state summarizes the
non-task distractions which are shown in detail in Figure 6.10.

185

6 Evaluation

Folders tagstore
Filing 678.67± 46.98 1044.79± 98.05
Re-finding 110.41± 9.99 141.69± 20.69

Table 6.5: Filing and re-finding times with mean values and standard errors. Filing in
folders was significantly faster with p < 0.01 (t(23) = −6.11).

script were published on the github repository. 46

6.4.2 Results

Success Rate

For 240 re-find processes per condition, there was one unsuccessful re-
finding process for the folder condition and four for the tagstore condition.
This results in a success rate of 99.6 percent for the folder condition and
98.3 percent for the tagstore condition.

Task Performance

In Table 6.5, the task times for the folder condition are smaller for filing as
well as for re-finding. For filing, there was a significant difference with p <
0.01 (t(23) = −6.11). For re-finding there was no significant difference (p >
0.09 with t(23) = −1.73). 47 Hence, folders were statistically significantly
faster for filing.

The bar charts shown in Figure 6.31 and Figure 6.32 clearly show a number
of sessions where the tagstore condition performed worse. Figure 6.33 and
Figure 6.34 show the boxplot for filing and re-finding of both conditions.

The comparison of the average mouse clicks of each tp in both conditions
did not reveal any significant difference (p > 0.92 with t(24) = −0.10).

46. https://github.com/novoid/2011-04-tagstore-formal-experiment – retrieved on
2012-08-26.

47. git: results.org.

186

https://github.com/novoid/2011-04-tagstore-formal-experiment

6.4 Formal Experiment 2

Figure 6.31: Bar chart for filing in both conditions.

Figure 6.32: Bar Chart for re-finding in both conditions.

187

6 Evaluation

folders tagstore

50
0

10
00

15
00

20
00

fil
in

g
tim

es

Figure 6.33: A boxplot of the filing tasks: the folder condition is significantly faster.

Besides evaluating general metrics as described above, we defined addi-
tional sets of persons and took a look into different comparisons.

Gender In order to find differences in the opinions which are related to
gender, we examined the answers for each gender separately.

Platform All tps were able to use Microsoft Windows and its Windows
Explorer without any problem. But only half of them were using this sys-
tem in their daily life. To find out, whether this is an issue, questionnaires
were analyzed for Windows users and the rest.

IT background Almost all of our tps (one exception which was aban-
doned in this metrics) were students or already had graduated from uni-

188

6.4 Formal Experiment 2

●

●

●

folders tagstore

10
0

20
0

30
0

40
0

re
−

fin
di

ng
 ti

m
es

Figure 6.34: A boxplot of the re-finding tasks: no significant difference could be found for
absolute refinding times of the tps between both conditions.

versity. We divided them up in a set of it-related background and a set of
non-it related studies.

Filer versus Piler A very common distinction regarding filing behavior is
the simple metrics of filer and piler. In the background questionnaires we
asked for the number of frequently used folders. As a very rough approx-
imation, persons that used up to five folders were classified as pilers and
all other were classified as filers.

Table 6.6 and Table 6.7 contain results from statistical analysis of the fil-
ing behavior in combination with the different sets of persons mentioned
above. The only significant results occurred in the tagstore condition: fe-
males were faster than males, and the tps who did not have tagging expe-
rience were faster than persons using tagging systems.

189

6 Evaluation

Filing in folders groups significance
gender females males not significant

721.75± 61.62 657.12± 39.04 p > 0.23 t(15)=-1.24

tagging experience taggers non-taggers not significant
639.00± 37.30 734.20± 57.31 p > 0.67 t(13)=-0.44

platform Windows other not significant
691.65± 53.11 602.88± 45.65 p > 0.23 t(16)=1.23

IT vs. other studies IT studies non-IT studies not significant
686.92± 46.39 740.18± 57.07 p > 0.85 t(11)=-0.19

filer vs. piler filer piler not significant
657.85± 49.11 703.27± 45.92 p > 0.97 t(12)=-0.04

Table 6.6: Filing in folder condition: overview of the results and statistical significance.
Each group is listed with its mean value (time), standard error, and p-value. No
statistically significant results were found.

Filing in tagstore groups significance
gender females males females faster

857.12± 72.81 1138.62± 103.00 p < 0.004 t(15)=3.42

tagging experience taggers non-taggers non-taggers faster
1166.00± 109.42 875.10± 63.63 p < 0.006 t(13)=3.33

platform Windows other not significant
1013.35± 82.28 1008.53± 101.44 p > 0.96 t(16)=0.04

IT vs. other studies IT studies non-IT studies not significant
1182.33± 109.44 1035.18± 127.77 p > 0.18 t(11)=1.40

filer vs. piler filer piler not significant
996.15± 72.84 1102.27± 123.89 p > 0.66 t(12)=-0.45

Table 6.7: Filing in tagstore condition: overview of the results and statistical significance.
Each group is listed with its mean value (time), standard error, and p-value.
Significant differences were found: females and persons with less tagging expe-
rience filed faster in tagstore.

190

6.4 Formal Experiment 2

Re-finding in folders groups significance
gender females males not significant

104.20± 7.86 122.85± 13.42 p > 0.23 t(15)=-1.23

tagging experience taggers non-taggers not significant
114.10± 8.70 105.26± 11.95 p > 0.23 t(13)=1.27

platform Windows other not significant
94.08± 7.05 118.97± 10.40 p > 0.08 t(16)=-1.87

IT vs. other studies IT studies non-IT studies not significant
105.89± 7.25 113.95± 12.97 p > 0.49 t(11)=-0.71

filer vs. piler filer piler not significant
113.59± 12.25 106.67± 6.93 p > 0.44 t(12)=0.80

Table 6.8: Re-finding in folder condition: overview of the results and statistical signifi-
cance. Each group is listed with its mean value (time), standard error, and p-
value. No statistically significant results were found.

For the re-finding tasks, there are four statistically significant differences
which are listed in Table 6.8 and Table 6.9. Once again, significant differ-
ences could only be found in the tagstore condition: tps who were not
using tagging systems were faster, and tps who did not study or graduate
in an it study were faster than it-graduated persons.

Artifacts

The artifacts the tps created had on average 7.6 characters per folder name
and 7.5 characters per tag name (Figure 6.35). Comparing the number of
(parent) folders for each file to the number of tags per file revealed 1.7
folders per file and 2.2 tags per file on average (Figure 6.36). For tagging,
the tps used many more different tags than folder names (Figure 6.37).

Interviews

Analysis of the transcripts of the interview phase (“How was it?”) revealed
certain aspects which were mentioned multiple times.

191

6 Evaluation

Re-finding in tagstore groups significance
gender females males not significant

137.24± 16.12 150.59± 29.01 p > 0.69 t(15)=-0.40

tagging experience taggers non-taggers non-taggers faster
167.13± 24.73 106.08± 8.29 p < 0.03 t(13)=2.44

platform Windows other not significant
116.09± 10.10 160.63± 22.74 p > 0.08 t(16)=-1.85

IT vs. other studies IT studies non-IT studies other studies faster
179.68± 25.22 101.37± 8.78 p < 0.011 t(11)=3.10

filer vs. piler filer piler not significant
115.29± 9.73 172.88± 27.47 p > 0.16 t(12)=-1.48

Table 6.9: Re-finding in tagstore condition: overview of the results and statistical signifi-
cance. Each group is listed with its mean value (time), standard error, and p-
value. Significant differences were found: persons with less tagging experience
and not having studied an IT-related study filed faster in tagstore.

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

folder condition tagstore condition

5
10

15
20

25

nu
m

be
r

of
 c

ha
ra

ct
er

s

Figure 6.35: A comparison of the lengths of folder names and tag names showed that there
is not much difference in the number of characters of folders and tags.

192

6.4 Formal Experiment 2

folder condition tagstore condition

1.
0

1.
5

2.
0

2.
5

3.
0

av
er

ag
e

nu
m

be
r

of
 a

ss
oc

ia
te

d
ca

te
go

rie
s

Figure 6.36: The number of associated (parent) folders of a file-path compared to the num-
ber of tags attached to files show that there are more tags associated to a file
than folders.

Filing Folders Five tps said that it was the method they are used to. Adjec-
tives like “complex”, “exhausting”, and “taxing” were used multiple times.
Some tps remarked that it was not their files that had to be processed. Fur-
thermore, they noted that some files would need multiple categories and
not only one single folder.

Filing tagstore Six tps noted that it would have been helpful to see more
tag recommendations. Four mentioned explicitly, that they very much liked
the feature of proposed tags. The auto-completing feature was mentioned
multiple times in a very positive way. Adjectives like “pleasant” (3×), “not
bad” (3×), “cool” (2×), “fast” (3×), “interesting”, “OK”, . . . were used. Two
tps said that it was “tedious” to think about tags for every file.

Re-finding Folders Four tps mentioned explicitly that this is the method
that they are used to. Three tps said that some files were hard to re-find.

193

6 Evaluation

●

folder condition tagstore condition

0
20

40
60

80
10

0

un
iq

ue
 o

cc
ur

re
nc

es
 p

er
 T

P

Figure 6.37: A boxplot comparing the number of (unique for each tp) folders with the list
of tags (unique for each tp) of the tps. There were many more different tags
used than different folder names created.

Furthermore, three tps mentioned that there were relatively few folders
and that this was the reason the re-finding process was not too difficult.
Two tps indicated that the method was “not supportive” and “chaotic”.
Two tps stated that they preferred tagstore and two noted that they were
able to re-find files quickly. It was also mentioned that for certain file types
(photographs), the folder method is not suitable.

Re-finding tagstore Five tps said that tagstore makes it fast to re-find
files in an easy way. Four tps said it was “simple”, “easy to use”, and
“easy to re-find”. Words and phrases like “intuitive”, “supportive” (2×),
“cool” (2×), “good”, “it works” (2×) were used. Two tps noted that they
had to remember which tags were used. One tp said that tagstore needs
more time for filing, but makes re-finding less painful and faster through
different associations. Several tps mentioned that it is important to think
about the tags to choose.

194

6.4 Formal Experiment 2

(a) Filing general files. (b) Filing image files.

(c) Filing text files.

Figure 6.38: User feedback for filing different kind of files in both conditions.

Feedback Questionnaires

Since the subjective feedback of the tps of the first formal experiment was
very positive, the design and evaluation of the feedback questionnaires was
done in an advanced fashion. The complete set of diagrams can be found
in Harzl et al. (2012).

The results of the feedback questionnaires after the filing tasks show that
users preferred the tagstore condition over the folder condition in the vast
majority of cases. In all cases, the ratings for the tagstore condition (green)
were generally more positive than the ratings for the folder condition (blue),
with only very rare exceptions for individual data points.

Figure 6.38 shows feedback results for filing general files, image files, and
text files. Feedback shows that the perceived differences had a maximum
for filing text documents.

Male tps gave very similar ratings for the three different file types (general,
images, text). Female tps produced more diverse feedback as shown in
Figure 6.39.

Persons using Microsoft Windows as their main system gave more pos-
itive feedback for tagstore than tps using other operating systems (Fig-

195

6 Evaluation

(a) Females: filing text files. (b) Males: filing text files.

Figure 6.39: User feedback for filing text files: female tps rating showed a different result
with a more diverse picture.

(a) Windows users: filing text files. (b) Non-Windows users: filing text files.

Figure 6.40: Users of Microsoft Windows rated the tagstore condition more positively than
users of other operating systems.

ure 6.40).

If a tp is studying or had graduated from a study related to it, the feedback
for filing text files in folders was more positive than for tps with no it study
(Figure 6.41). For image files, the non-it persons rated the folder hierarchy
better than the others.

User acceptance for tagstore after the filing tasks was very high: 78 percent
of the tps would prefer the tagstore condition over the folder condition
(Figure 6.42) and 88 percent agreed to the question whether or not they
would use tagstore on their own computer (Figure 6.43).

The results of the questionnaires after the re-finding tasks showed a simi-
lar tendency towards the tagstore condition. In general, tps found the tag-
store condition more intuitive, simple, time-saving, structured and faster
than the hierarchy condition. Compared to the folder condition, tagstore
was also better for providing a good overview. The only attribute where
the folder condition showed better results in general was familiarity. Fig-
ure 6.44 shows the comparison between the feedback for the conditions

196

6.4 Formal Experiment 2

(a) IT studies: filing image files. (b) Non-IT studies: filing image files.

(c) IT studies: filing text files. (d) Non-IT studies: filing text files.

Figure 6.41: Diverse feedback between it studies and non-it studies for filing.

(a) “Which condition would you prefer?” On the left-hand
side there is maximum preference for tagstore and on the
right-hand side there is maximum preference for folders.

(b) A condensed pie chart
graph: 78 percent for tag-
store, 13 percent for fold-
ers, and 9 percent of no
preference.

Figure 6.42: The majority of tps would prefer the tagstore condition over the folder condi-
tion after the filing tasks.

197

6 Evaluation

(a) “Would you use tagstore on your own computer?” On
the left-hand side there is maximum consent and on the
right-hand side there is minimum consent to the question.

(b) A condensed pie chart
graph: 88 percent agreed
with a high degree, 8 per-
cent were unsure, and
4 percent declined.

Figure 6.43: The majority of tps would use tagstore on their own computer after the filing
tasks.

after the re-finding tasks. On average, a tp found the tagstore condition to
be faster than the folder condition. However, only ten of 24 tps were faster
for re-finding with the tagstore condition.

Analyzing the results from the questionnaires separated by gender (Fig-
ure 6.45) revealed that female users favored the tagstore condition to a
greater extent than male users. For the filing tasks feedback, it was the
other way round.

The difference between the two conditions is higher for tps who do not
have tagging experience. They also found that the tagstore condition was
simpler for the re-finding tasks. Figure 6.46 visualizes the different ratings
for taggers and non-taggers. The non-taggers also rated hierarchy for re-
finding as much more time-consuming than the tagstore condition.

Users of operating systems other than Microsoft Windows rated the tag-
store re-finding condition for general items as more familiar than the folder
condition. Furthermore, they rated the folder condition as more structured
than tagstore. The average numbers mentioned in this paragraph differed

198

6.4 Formal Experiment 2

(a) Re-finding general files. (b) Re-finding image files.

(c) Re-finding text files.

Figure 6.44: User feedback for re-finding different kinds of files in both conditions.

(a) Females: re-finding text files. (b) Males: re-finding text files.

Figure 6.45: User feedback for re-finding text files: female tps rated the tagstore condition
as more positive than males.

199

6 Evaluation

(a) Tagging experienced: re-finding files. (b) Non-tagging experienced: re-finding
files.

Figure 6.46: Tagging experienced tps rated tagstore better than non-taggers and found
tagstore more simple than the folder condition for re-finding.

(a) Non-Windows users: general files. (b) Non-Windows users: image files.

Figure 6.47: Left: The only case where the folder condition was slightly less familiar and
more structured was for tps who do not use Microsoft Windows as their main
system. Right: Re-finding specific file types such as images reversed this fact,
showing the usual rating differences.

only by a small fraction, as shown in Figure 6.47(a). This was the only case
where the folder condition was more unfamiliar and more structured than
tagstore. Figure 6.47(b) shows the same set of tps rating re-finding of image
files which did not result in this exceptional ratings.

Some aspects of the rating results for tps who studies or graduated an it

study revealed a more positive rating for the tagstore condition than the
group of academics of non-it studies.

Figure 6.48 summarizes the answers for the question of which condition a
tp prefers after re-finding. More than half of the tps preferred the tagstore
condition and only a fourth of the tps preferred the folder condition.

200

6.4 Formal Experiment 2

(a) “Which condition would you prefer?” On the left-hand
side there is maximum preference for tagstore and on the
right-hand side there is maximum preference for folders.

(b) A condensed pie chart
graph: 54 percent for tag-
store, 25 percent for fold-
ers, and 21 percent no pref-
erence.

Figure 6.48: The majority of tps would prefer the tagstore condition over the folder condi-
tion after the re-finding tasks.

(a) “Would you use tagstore on your own computer?” On
the left-hand side there is maximum consent and on the
right-hand side there is minimum consent to the question.

(b) A condensed pie chart
graph: 63 percent agreed
with a high degree, 29 per-
cent were unsure, and
8 percent declined.

Figure 6.49: The majority of tps would use tagstore on their own computer after the re-
finding tasks.

201

6 Evaluation

User acceptance was even higher for the question of whether or not the tps
would like to use tagstore on their own computer (Figure 6.49). Slightly less
than two thirds would like to use tagstore and only eight percent would
not like to use tagstore. The rest was unsure.

All feedback ratings showed that tagstore is the preferred condition of the
tps.

6.4.3 Discussion

Success rates for re-finding were above 98 percent in any case. Hence, it is
not a very suitable measure to judge the effectiveness of both conditions.

Folders performed significantly better for filing tasks. Statistical analysis of
the conditions showed that female tps who were not using tagging systems
themselves were performing best when filing in tagstore.

For re-finding, it was remarkable that once more, people not using tagging
systems themselves were significantly faster using tagstore. This result con-
tradicts the logical assumption that persons who use tagging themselves
have an advantage in task times. The reason for this might be that the tps
using tagging systems want to think more carefully about the tags they
use. However, this obviously did not help for task times in the re-finding
phase, where non-tagging tps outperformed the other tps once more.

Furthermore, tps who did not study or finish an it study outperformed
the tps who studies or graduated from an it study in re-finding. This is
quite interesting, because one might think that it-savvy persons have an
advantage with new types of interfaces and methods. That result should
be inspected further.

Artifacts showed that the metadata associated with items in tagstore was
richer than in folders (Figure 6.36). This is an advantage for the re-finding
process and shows that the tagging effort for tps using tagstore does not
seem to be that taxing.

The interviews showed a very positive and open-minded attitude of the
tps who favored tagstore. They associated much more positive attributes

202

6.4 Formal Experiment 2

to tagstore than to the folder condition. Subjective impression about time
consumption and ease of use was much better for tagstore even though
objective numbers contradicted from time to time.

Detailed analysis of the feedback questionnaires revealed interesting facts.
First of all, tagstore was rated more positively than the folder condition in
almost every case. Only the absolute difference to the ratings of the folder
condition varied.

For filing, females who were using Microsoft Windows, not having studied
it and not using tagging systems before, rated tagstore in a more posi-
tive way. This has some similarity to the task time performance mentioned
above.

After the re-finding tasks, tps showed very positive ratings for tagstore as
well. Only familiarity was rated higher for the folder condition. This seems
obvious, since no tp had used tagstore before, in contrast to Microsoft Win-
dows and its Windows Explorer.

Re-finding with the tagstore condition was rated best by females who did
not use tagging systems, were working on a non-Windows operating sys-
tem, and studies/graduated from an it study.

The questions for the preferred condition of whether or not to use tagstore
on one’s own computer revealed a huge majority favoring tagstore. How-
ever, the numbers decreased from the first questionnaires after filing to the
second ones after re-finding. This positive user acceptance shows that there
is a desperate need for an alternative file management method like the one
tagstore provides.

Probably the most interesting result is the different picture that arises from
the objective numbers and the subjective feedback and ratings. On the one
hand, task times reveal an advantage for the folder condition (significant
only for filing). On the other hand, subjective measures show a clear ten-
dency towards the tagstore condition. User acceptance is much higher for
tagstore than for the traditional folders method, which the tps were using
for many years.

This poses the question whether or not pim research should aim for effi-
ciency (task times) or user acceptance and user satisfaction. These results

203

6 Evaluation

gave evidence that the both do not necessarily go hand in hand with each
other.

204

And I’m thinking what a mess we’re in
Hard to know where to begin

Virtual Insanity
Jamiroquai

7 Summary and Outlook

Several great Personal Information Management (pim) research papers were
presented in Chapter 2. Some of them provided ground-breaking visions,
some gave insight from a psychological perspective, some presented novel
tools. Many ideas resulted in clever prototypes and were evaluated in sig-
nificant studies.

Chapter 3 discussed some key aspects and challenges, for which I find it
very important to do further research. Changing parameters and environ-
ments require new approaches for pim. Search is a critical research topic for
a large number of applications. However, navigation represents a crucial
method as well. I presented several different factors which emphasize the
need for better navigational methods. The strict hierarchical system of fold-
ers is a limiting factor to most people. It does not allow multi-classification
and re-finding becomes a tedious task.

I developed the TagTrees method as a possible new approach to enhance
navigational access for local items (files and folders) and to provide an
alternative to the strict folder hierarchy. User-assigned tags are used to de-
rive TagTrees, which are mapped onto the file system layer. Many different
navigation paths lead to every single item, allowing for associative naviga-
tion. To access an item, no paths have to be remembered; intuitive cues are
sufficient to re-find information.

205

7 Summary and Outlook

This TagTrees method was implemented in a research software framework
called tagstore. It not only provides a strict implementation of the method,
but also contains several other aspects which target end user convenience
and acceptance. The tagging process should not be seen as a burden, but
as a chance to express oneself. Maximum usability and features to sup-
port users in many ways was our goal. For researchers, tagstore includes a
number of interesting features that qualify tagstore as being a test frame-
work for studies on controlled vocabulary, multiple tag lines, recommender
systems, and so forth.

Long-term users gave valuable feedback during the whole project, starting
with the first prototype. Two formal experiments were conducted to obtain
objective measures as well. The second experiment showed that, for fil-
ing tasks, the traditional folder structure performs statistically significantly
faster than tagstore. The first experiment showed that users needed less
mouse clicks for re-finding in tagstore. A large number of metrics gives
insight to many interesting facts, such as tagging-savvy participants usu-
ally performing worse than participants who did not use tagging systems
before. Although the objective numbers do not state a clear winner, the
subjective feedback does. Almost all metrics we could think of favored the
tagstore implementation over the traditional folder method. User accep-
tance was overwhelmingly in favor of tagstore.

The main contributions of this dissertation are a through summary of pre-
vious work in the topic of pim, the development of the TagTrees method,
the tagstore implementation, and evaluations in multiple long-term and
short-term studies.

Results show that navigational re-finding can be improved using an alter-
native method like TagTrees. Subjective user feedback was very explicit and
positive in favor of tagstore and also showed that users like the notion of
multi-classification and associative navigation. They organize information
in a better way compared to the strict hierarchies.

A larger field study would be able to show implementation optimizations
and more results related to long-term behavior of a more diverse set of
participants.

206

Although the evaluation of the studies was very elaborate, there are so
many possible metrics that we could not derive or probably even imag-
ine them all. Many aspects concerning the test user artifacts can be part of
further research work. We documented clearly how the artifacts were col-
lected and published everything from the tagstore implementation and the
raw data, to the scripts processing this data, up to the results and analyses.
Other researchers are able to download this data and come up with new
interpretations and different evaluation ideas.

With the free availability of the tagstore framework, researchers can use it
to conduct experiments with aspects of controlled vocabulary, multiple tag
lines containing different types of tags, recommendation systems, expiry
dates, and much more. The software can even be extended with additional
features and configurations in an easy way.

Promising research should also be done by observing the change of tag-
ging behavior over time. There are references to the fact that users need
a certain amount of active tagging time to develop “their system” which
they keep using for a longer period of time. I think that more research on
categorizer and describer user types would lead to important results on
tagging behavior.

Since tagstore is a research software, it has some practical limitations. To use
tagstore over a longer period of time with a large number of items, further
development should derive better ways for mapping tags to navigational
paths. Other software tools use databases or special kinds of file systems.
If this could be achieved without complicating the product, tagstore could
be moved from a research software to a product.

Using folders to represent metadata such as tags, is a clever way to inte-
grate a method like TagTrees into legacy software environments. However,
this is just a workaround solution. Developing file systems which do not
rely on a hierarchical internal representation, would be a first and impor-
tant step. For a large number of things, hierarchical structures still work.
Operating system files and end user software files might not need multi-
classification at all. The part of the file system where users manage their
files does need advanced file management features. TagTrees could be in-
cluded into the file system level as well. From a technical perspective, this
is the target layer TagTrees has to be implemented in.

207

7 Summary and Outlook

Moving features like multi-classification to the operating system and its
underlying file system is a crucial step we have to make. Otherwise, end
users need to spend even more effort for file management than they al-
ready do these days. A fully integrated TagTrees method would have ad-
ditional possibilities for recommender systems which scan the content of
items. Combined implicit and explicit semantic metadata would be able to
provide an even better user experience.

TagTrees or tagstore is not the only method we should focus on. It is one
possible part of a better pim system out of many. It resembles a single (first)
step towards a new direction which can be combined with other fresh ideas
and best practices as well. With end users becoming more aware of pim

issues and proving that “different” can also be “better”, outdated patterns
could be changed.

My long-term vision is a computer that does not need the concept of files
or folders at all. Cutrell et al. (2006) mentioned that users do not want to
remember file locations. The same paper mentioned that the file level is too
monolithic and the haystack project (Section 2.2.7) used finer-grained infor-
mation chunks as well. In fact, there have been systems that implemented
this idea to a certain extent. For example, the data soup of Apple’s New-
ton Message Pad (Smith, 1994) resembled such an advanced paradigm.
Currently, my most important data is managed and organized in Emacs
Org-mode 1. Using a very simple text format as the common denominator
wrongly seems to be a restriction to most people. Unlike this very min-
imalist approach, it offers the most elaborate and advanced feature-set I
am aware of. With its Wiki-like structure, file borders do not limit my pim

anymore.

Many iterative processes and revolutionary attempts have to be made to
achieve this vision. This is not an easy task. There is not only the problem
of coming up with a solution in the first place. The migration from the
current situation is probably just as difficult. Millions of software products
and processes are bound to use files as the smallest common denominator.
Accomplishing this huge task will require a broad consensus that there
is a desperate need for change, great researchers, bright ideas, and many
attempts to get the best pim experience possible.

1. http://orgmode.org – retrieved on 2012-09-03.

208

http://orgmode.org

Papers

This chapter summarizes papers, which are related to this thesis and were
peer-reviewed by at least three reviewers. My contribution to the follow-
ing papers includes everything except listed contributions from my co-
authors.

The listed publications have already been published. Further results of this
project will be part of future papers that are not yet published.

2009

Karl Voit, Keith Andrews, and Wolfgang Slany (Nov. 2009). “Why Per-
sonal Information Management (PIM) Technologies Are Not Widespread.”
In: PIM09 ASIS&T 2009 Workshop, Vancouver, BC, Canada. Vancouver, BC,
Canada: ACM, pp. 60–64. url: http://pimworkshop.org/2009/index.
php?page=acceptedpapers

Context The paper analyzed the situation of pim in the field of file man-
agement regarding user acceptance and tool distribution. Eight require-
ments, which should be focused on, were described in detail.

Referring to chapters: Background

Co-authors Introduction, abstract, proofreading, structure, citation style,
and reference check.

209

http://pimworkshop.org/2009/index.php?page=acceptedpapers
http://pimworkshop.org/2009/index.php?page=acceptedpapers

7 Summary and Outlook

2011

Karl Voit, Keith Andrews, and Wolfgang Slany (Nov. 2011). “TagTree: Stor-
ing and Re-finding Files Using Tags.” In: Proc. 7th Conference of the Aus-
trian Computer Society Workgroup: Human-Computer Interaction (Usab 2011).
Vol. 7058. LNCS. Graz, Austria: Springer, pp. 471–481. isbn: 364-225-3636.
doi: 10.1007/978-3-642-25364-5_33

Context The tagstore implementation was introduced and described for
the first time.

Referring to chapters: Implementation

Co-authors Citation style, reference check, proofreading, minor improve-
ments and wording.

Karl Voit, Keith Andrews, Wolfgang Wintersteller, et al. (Mar. 2011). “Tag-
Tree: Exploring Tag-Based Navigational Structures.” In: 12th Internationalen
Symposium der Informationswissenschaft (ISI). Ed. by Joachim Griesbaum,
Thomas Mandl, and Christa Womser-Hacker. Vol. 58. Information und
Wissen: global, sozial und frei? Hildesheim, Germany: Werner Hülsbusch,
pp. 516–518. isbn: 978-3-940317-91-9. url: http://www.vwh-verlag.de/
vwh/?p=620

Context The focus of this publication is the TagTrees method and its im-
plications for information architecture and user experience.

Referring to chapters: TagTrees, Implementation

Co-authors Citation style, reference check, proofreading, tagstore overview,
and some paragraphs from the Requirements sections.

210

http://dx.doi.org/10.1007/978-3-642-25364-5_33
http://www.vwh-verlag.de/vwh/?p=620
http://www.vwh-verlag.de/vwh/?p=620

2012

Karl Voit, Keith Andrews, and Wolfgang Slany (Feb. 2012a). “Creating
a Comparative Environment for PIM Evaluation.” In: PIM12 CSCW 2012
Workshop. Seattle, WA, USA. url: http://pimworkshop.org/2012/papers

Context This paper described tagstore as a flexible testing framework for
conducting studies related to tagging. Providing a state-of-the-art tagging
interface, which maps tag structures to the file system, allows for compa-
rable study design.

Referring to chapters: TagTrees, Implementation, Evaluation

Co-authors Reference check, proofreading.

Karl Voit, Keith Andrews, and Wolfgang Slany (May 2012b). “Tagging
Might Not Be Slower Than Filing in Folders.” In: Proceedings of the 2012
ACM Annual Conference on Human Factors in Computing Systems, Extended
Abstracts (CHI2012). CHI ’12. Austin, Texas, USA: ACM, pp. 2063–2068.
isbn: 978-1-4503-1016-1. doi: 10.1145/2212776.2223753. url: http://dl.
acm.org/citation.cfm?id=2212776.2223753

Context Preliminary results from the first formal experiment were pub-
lished in this paper. The very positive user feedback was one of the major
results.

Referring to chapters: Evaluation

Co-authors Reference check, proofreading.

211

http://pimworkshop.org/2012/papers
http://dx.doi.org/10.1145/2212776.2223753
http://dl.acm.org/citation.cfm?id=2212776.2223753
http://dl.acm.org/citation.cfm?id=2212776.2223753

Bibliography

Abrams, David, Ronald Baecker, and Mark H. Chignell (Apr. 1998). “Infor-
mation Archiving with Bookmarks: Personal Web Space Construction
and Organization.” In: Proceeding of the CHI ’98 Conference on Human
Factors in Computing Systems(CHI98). Ed. by Michael E. Atwood et al.
Los Angeles, California, USA: ACM, pp. 41–48. isbn: 0-201-30987-4 (cit.
on p. 19).

Allen, David (2001). Getting Things Done – The Art of Stress-Free Productivity.
Penguin Books. url: http://www.gtdtimes.com/ (cit. on p. 72).

Alvarado, Christine et al. (2003). Surviving the information explosion: How peo-
ple find their electronic information. AI Memo AIM-2003-006. Department
of Computer Science: MIT AI Laboratory. url: http://hdl.handle.
net/1721.1/6713 (cit. on pp. 83, 234, 237).

Anderwald, Johannes (2012). “tagstore: A Mobile Tagging Application with
Synchronization.” MA thesis. Graz, Austria: Graz University of Tech-
nology (cit. on p. 122).

Baeza-Yates, Ricardo A. and Berthier Ribeiro-Neto (2011). Modern Informa-
tion Retrieval. 2nd. Harlow, England: Pearson Education Ltd. isbn: 978-
0-321-41691-9 (cit. on pp. 68, 235, 236).

Bakshi, Karun and David R. Karger (2005). “End-user Application Devel-
opment for the Semantic Web.” In: Proceedings of the 1st Workshop on the
Semantic Desktop: Next Generation Personal Information Management and
Collaboration Infrastructure, located at the International Semantic Web Con-
ference. url: http://people.csail.mit.edu/kbakshi/SemDesk%20-
%20Final.pdf (cit. on pp. 29, 31).

Bälter, Olle (Aug. 1997). “Strategies for Organising Email.” In: BCS HCI. Ed.
by Harold W. Thimbleby, Brid O’Conaill, and Peter Thomas. Springer,
pp. 21–38. isbn: 3-540-76172-1 (cit. on p. 19).

213

http://www.gtdtimes.com/
http://hdl.handle.net/1721.1/6713
http://hdl.handle.net/1721.1/6713
http://people.csail.mit.edu/kbakshi/SemDesk%20-%20Final.pdf
http://people.csail.mit.edu/kbakshi/SemDesk%20-%20Final.pdf

Bibliography

Barreau, Deborah (June 1995). “Context as a Factor in Personal Information
Management Systems.” In: Journal of the American Society for Information
Science 46.5, pp. 327–339. issn: 0002-8231. doi: 10.1002/(SICI)1097-
4571(199506)46:5<327::AID-ASI4>3.0.CO;2-C (cit. on p. 82).

Barreau, Deborah (Jan. 2008). “The Persistence of Behavior and Form in the
Organization of Personal Information.” In: Journal of the American Soci-
ety for Information Science and Technology 59.2, pp. 307–317. issn: 1532-
2882. doi: 10.1002/asi.20752 (cit. on p. 83).

Barreau, Deborah and Bonnie A. Nardi (July 1995). “Finding and Remind-
ing: File Organization from the Desktop.” In: SIGCHI Bulletin 27.3,
pp. 39–43. issn: 0736-6906. doi: 10.1145/221296.221307. url: http:
//www.sigchi.org/bulletin/1995.3/barreau.html (cit. on pp. 19, 64,
81).

Bell, Gordon and Jim Gemmell (Sept. 2009). Total Recall. 1st. Dutton (cit. on
pp. 42, 43, 45).

Bergman, Ofer et al. (Sept. 2008). “Improved Search Engines and Naviga-
tion Preference in Personal Information Management.” In: Transactions
on Information Systems 26.4, pp. 1–24. issn: 1046-8188. doi: 10.1145/
1402256.1402259 (cit. on p. 84).

Binder, Gerulf (2012). Marktübersicht von Tagging-Werkzeugen und Vergleich
mit tagstore. Tech. rep. Graz, Austria: Graz University of Technology
(cit. on p. 139).

Binder, Kurt (1986). “Monte Carlo Methods in Statistical Physics.” In: 2nd.
Vol. 7. Topics in Current Physics. Springer Verlag, p. 411. isbn: 978-
0387-165-141 (cit. on p. 90).

Bloehdorn, Stephan et al. (Sept. 2006). “TagFS – Tag Semantics for Hier-
archical File Systems.” In: Proc. 6th International Conference on Knowl-
edge Management (I-KNOW 06). Graz, Austria, pp. 304–312. url: http:
//triple- i.tugraz.at/blog/wp- content/uploads/2008/11/37_

tagfs.pdf (cit. on pp. 47, 96).
Boardman, Richard (July 2001). “Category Overlap between Hierarchies in

User Workspace.” In: Proceedings of IFIP INTERACT’01: Human-Computer
Interaction. Tokyo, Japan, pp. 759–760 (cit. on p. 32).

Boardman, Richard and M. Angela Sasse (Mar. 2001). “Multiple Hierarchies
in User Workspace.” In: Proc. 19th SIGCHI Conference on Human Fac-
tors in Computing Systems (CHI 2001) Extended Abstracts. Seattle, Wash-
ington, USA: ACM, pp. 403–404. doi: 10.1145/634067.634304. url:

214

http://dx.doi.org/10.1002/(SICI)1097-4571(199506)46:5<327::AID-ASI4>3.0.CO;2-C
http://dx.doi.org/10.1002/(SICI)1097-4571(199506)46:5<327::AID-ASI4>3.0.CO;2-C
http://dx.doi.org/10.1002/asi.20752
http://dx.doi.org/10.1145/221296.221307
http://www.sigchi.org/bulletin/1995.3/barreau.html
http://www.sigchi.org/bulletin/1995.3/barreau.html
http://dx.doi.org/10.1145/1402256.1402259
http://dx.doi.org/10.1145/1402256.1402259
http://triple-i.tugraz.at/blog/wp-content/uploads/2008/11/37_tagfs.pdf
http://triple-i.tugraz.at/blog/wp-content/uploads/2008/11/37_tagfs.pdf
http://triple-i.tugraz.at/blog/wp-content/uploads/2008/11/37_tagfs.pdf
http://dx.doi.org/10.1145/634067.634304

Bibliography

http://www.iis.ee.ic.ac.uk/~rick/research/pubs/workspace-

chi2001.pdf (cit. on p. 32).
Boardman, Richard and M. Angela Sasse (Apr. 2004). ““Stuff Goes into

the Computer and Doesn’t Come Out”: A Cross-Tool Study of Per-
sonal Information Management.” In: Proc. 22nd SIGCHI Conference on
Human Factors in Computing Systems (CHI 2004). Vienna, Austria: ACM,
pp. 583–590. doi: 10.1145/985692.985766. url: http://www.iis.ee.
ic.ac.uk/~rick/research/pubs/boardman-chi04.pdf (cit. on pp. 9,
17, 19, 20, 32, 33, 64, 71, 80, 83, 89, 101).

Boardman, Richard, M. Angela Sasse, and Bob Spence (Nov. 2002). “Life
Beyond the Mailbox: A Cross-Tool Perspective on Personal Information
Management.” In: Proc. CSCW 2002 Workshop on Redesigning Email for
the 21st Century. New Orleans, Louisiana, USA: ACM. url: http://
www.iis.ee.ic.ac.uk/~rick/research/pubs/email-cscw2002.pdf

(cit. on p. 32).
Bush, Vannevar (1945). “As We May Think.” In: Atlantic Monthly 176, pp. 101–

108. url: http://www.theatlantic.com/magazine/archive/1945/07/
as-we-may-think/3881/ (cit. on pp. 10, 101).

Chau, Duen Horng, Brad Myers, and Andrew Faulring (Apr. 2008a). “Feld-
spar: A System for Finding Information by Association.” In: Proceed-
ings of the Personal Information Management Workshop at the CHI 2008
(PIM2008). Ed. by Jaime Teevan and William Jones. Florence, Italy:
ACM. url: http://www.cs.cmu.edu/~dchau/feldspar/feldspar-
pim08.pdf (cit. on pp. 49, 50).

Chau, Duen Horng, Brad Myers, and Andrew Faulring (Apr. 2008b). “What
to do When Search Fails: Finding Information by Association.” In: Proc.
26th SIGCHI Conference on Human Factors in Computing Systems (CHI
2008). Florence, Italy: ACM, pp. 999–1008. doi: 10 . 1145 / 1357054 .

1357208. url: http://www.cs.cmu.edu/~dchau/feldspar/feldspar-
chi08.pdf (cit. on pp. 49, 50, 61, 101, 237).

Cho, Hyeyoung, Sungho Kim, and Sik Lee (Dec. 2009). “Analysis of Long-
Term File System Activities on Cluster Systems.” In: World Academy of
Science, Engineering and Technology 36, pp. 159–164. url: http://www.
waset.org/journals/waset/v60/v60-28.pdf (cit. on pp. 64, 65, 89,
104, 105).

Chui, Michael et al. (July 2012). The Social Economy: Unlocking Value and
Productivity Through Social Technologies. Tech. rep. McKinsey Global In-

215

http://www.iis.ee.ic.ac.uk/~rick/research/pubs/workspace-chi2001.pdf
http://www.iis.ee.ic.ac.uk/~rick/research/pubs/workspace-chi2001.pdf
http://dx.doi.org/10.1145/985692.985766
http://www.iis.ee.ic.ac.uk/~rick/research/pubs/boardman-chi04.pdf
http://www.iis.ee.ic.ac.uk/~rick/research/pubs/boardman-chi04.pdf
http://www.iis.ee.ic.ac.uk/~rick/research/pubs/email-cscw2002.pdf
http://www.iis.ee.ic.ac.uk/~rick/research/pubs/email-cscw2002.pdf
http://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/3881/
http://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/3881/
http://www.cs.cmu.edu/~dchau/feldspar/feldspar-pim08.pdf
http://www.cs.cmu.edu/~dchau/feldspar/feldspar-pim08.pdf
http://dx.doi.org/10.1145/1357054.1357208
http://dx.doi.org/10.1145/1357054.1357208
http://www.cs.cmu.edu/~dchau/feldspar/feldspar-chi08.pdf
http://www.cs.cmu.edu/~dchau/feldspar/feldspar-chi08.pdf
http://www.waset.org/journals/waset/v60/v60-28.pdf
http://www.waset.org/journals/waset/v60/v60-28.pdf

Bibliography

stitute. url: http://www.mckinsey.com/insights/mgi/research/
technology_and_innovation/the_social_economy (cit. on p. 68).

Cockton, Gilbert and Panu Korhonen, eds. (Apr. 2003). Proceedings of the
2003 Conference on Human Factors in Computing Systems, CHI2003. Ft.
Lauderdale, Florida, USA. isbn: 1-58113-630-7.

Collins, Anthony (June 2011). “New dimensions of file access at table-
tops: associative and hierarchical; private and shared; individual and
collaborative.” PhD thesis. Sydney, Australia: School of Information
Technologies, University of Sydney. url: http : / / sydney . edu . au /

engineering/it/~anthony/publications/AnthonyCollins-PhDThesis.

pdf (cit. on p. 101).
Corbató, F. J. and V. A. Vyssotsky (1965). “Introduction and Overview of

the Multics System.” In: Proceedings of the November 30–December 1, 1965,
fall joint computer conference, part I. AFIPS ’65 (Fall, part I). Las Vegas,
Nevada: ACM, pp. 185–196. doi: 10.1145/1463891.1463912. url: http:
//www.multicians.org/fjcc1.html (cit. on p. 3).

Cutrell, Edward et al. (Apr. 2006). “Fast, Flexible Filtering with Phlat.” In:
Proc. SIGCHI Conference on Human Factors in Computing Systems (CHI
2006). Montréal, Québec, Canada: ACM, pp. 261–270. doi: 10.1145/
1124772.1124812. url: http://research.microsoft.com/en-us/um/
people/cutrell/chi2006%20proceedings--phlat.pdf (cit. on pp. 37–
40, 89, 99, 208).

Delescluse, Matthieu et al. (Aug. 2011). “Making neurophysiological data
analysis reproducible. Why and how?” In: Journal of Physiology Paris
(cit. on p. 53).

De Vocht, Laurens et al. (Feb. 2012). Formal Experiment Report: Tagging files
vs. placing files in a hierarchy. Tech. rep. Graz, Austria: Graz University
of Technology. url: https://github.com/novoid/2011-01-tagstore-
formal - experiment / blob / master / analysis _ and _ derived _ data /

Results_Report.pdf (cit. on pp. 145, 170).
Dominik, Carsten (2010). The Org-Mode 7 Reference Manual: Organize Your

Life with GNU Emacs. with contributions by David O‘Toole, Bastien
Guerry, Philip Rooke, Dan Davison, Eric Schulte, and Thomas Dye. UK:
Network Theory (cit. on p. 53).

Dourish, Paul (2003). “The Appropriation of Interactive Technologies: Some
Lessons from Placeless Documents.” In: Computer Supported Cooperative
Work (CSCW) 12.4, pp. 465–490 (cit. on p. 28).

216

http://www.mckinsey.com/insights/mgi/research/technology_and_innovation/the_social_economy
http://www.mckinsey.com/insights/mgi/research/technology_and_innovation/the_social_economy
http://sydney.edu.au/engineering/it/~anthony/publications/AnthonyCollins-PhDThesis.pdf
http://sydney.edu.au/engineering/it/~anthony/publications/AnthonyCollins-PhDThesis.pdf
http://sydney.edu.au/engineering/it/~anthony/publications/AnthonyCollins-PhDThesis.pdf
http://dx.doi.org/10.1145/1463891.1463912
http://www.multicians.org/fjcc1.html
http://www.multicians.org/fjcc1.html
http://dx.doi.org/10.1145/1124772.1124812
http://dx.doi.org/10.1145/1124772.1124812
http://research.microsoft.com/en-us/um/people/cutrell/chi2006%20proceedings--phlat.pdf
http://research.microsoft.com/en-us/um/people/cutrell/chi2006%20proceedings--phlat.pdf
https://github.com/novoid/2011-01-tagstore-formal-experiment/blob/master/analysis_and_derived_data/Results_Report.pdf
https://github.com/novoid/2011-01-tagstore-formal-experiment/blob/master/analysis_and_derived_data/Results_Report.pdf
https://github.com/novoid/2011-01-tagstore-formal-experiment/blob/master/analysis_and_derived_data/Results_Report.pdf

Bibliography

Dourish, Paul, W. Keith Edwards, Anthony Lamarca, et al. (Apr. 2000).
“Extending Document Management Systems with User-Specific Active
Properties.” In: Transactions on Information Systems 18.2, pp. 140–170.
issn: 1046-8188. doi: 10 . 1145 / 348751 . 348758. url: http : / / www .

dourish.com/publications/2000/tois-placeless.pdf (cit. on p. 28).
Dourish, Paul et al. (June 1999a). “Presto: An Experimental Architecture

for Fluid Interactive Document Spaces.” In: Transactions on Information
Systems 6.2, pp. 133–161. issn: 1073-0516. doi: 10.1145/319091.319099.
url: http://www.dourish.com/publications/1999/tochi-presto.pdf
(cit. on p. 28).

Dourish, Paul et al. (Nov. 1999b). “Using Properties for Uniform Interac-
tion in the Presto Document System.” In: Proc. 12th Annual ACM Sympo-
sium on User Interface Software and Technology (UIST’99). Asheville, North
Carolina, USA: ACM, pp. 55–64. doi: 10.1145/320719.322583. url:
http://www2.parc.com/csl/projects/placeless/papers/uist99-

presto.pdf (cit. on pp. 28, 29).
Dumais, Susan et al. (2003). “Stuff I’ve Seen: a System for Personal Informa-

tion Retrieval and Re-use.” In: Proceedings of the 26th annual international
ACM SIGIR conference on Research and development in informaion retrieval.
SIGIR ’03. Toronto, Canada: ACM, pp. 72–79. isbn: 1-58113-646-3. doi:
10.1145/860435.860451 (cit. on pp. 33–36, 38–40, 80, 89).

Dumas, Joseph S. and Janice C. Redish (1999). A Practical Guide to Usability
Testing. 2nd. Lives of Great Explorers Series. Intellect Limited. isbn:
9781841500201 (cit. on p. 142).

Elsweiler, David (Nov. 2007). “Supporting Human Memory in Personal In-
formation Management.” PhD thesis. Department of Computer and In-
formation Sciences, University of Strathclyde. url: http://www.cis.
strath.ac.uk/cis/research/publications/papers/strath_cis_

publication_2328.pdf (cit. on p. 101).
Engelbart, Douglas C. and William K. English (1968). “A Research Center

for Augmenting Human Intellect.” In: Proceedings of the December 9–
11, 1968, fall joint computer conference, part I. AFIPS ’68 (Fall, part I).
San Francisco, California: ACM, pp. 395–410. doi: 10.1145/1476589.
1476645. url: http://sloan.stanford.edu/MouseSite/ (cit. on pp. 22,
23).

Faubel, Sebastian and Christian Kuschel (Oct. 2008). “Towards Semantic
File System Interfaces.” In: International Semantic Web Conference (Posters

217

http://dx.doi.org/10.1145/348751.348758
http://www.dourish.com/publications/2000/tois-placeless.pdf
http://www.dourish.com/publications/2000/tois-placeless.pdf
http://dx.doi.org/10.1145/319091.319099
http://www.dourish.com/publications/1999/tochi-presto.pdf
http://dx.doi.org/10.1145/320719.322583
http://www2.parc.com/csl/projects/placeless/papers/uist99-presto.pdf
http://www2.parc.com/csl/projects/placeless/papers/uist99-presto.pdf
http://dx.doi.org/10.1145/860435.860451
http://www.cis.strath.ac.uk/cis/research/publications/papers/strath_cis_publication_2328.pdf
http://www.cis.strath.ac.uk/cis/research/publications/papers/strath_cis_publication_2328.pdf
http://www.cis.strath.ac.uk/cis/research/publications/papers/strath_cis_publication_2328.pdf
http://dx.doi.org/10.1145/1476589.1476645
http://dx.doi.org/10.1145/1476589.1476645
http://sloan.stanford.edu/MouseSite/

Bibliography

& Demos). Ed. by Amit P. Sheth et al. Vol. 5318. Lecture Notes in Com-
puter Science. Karlsruhe, Germany: Springer. isbn: 978-3-540-88563-4.
url: http://ceur-ws.org/Vol-401/iswc2008pd_submission_8.pdf
(cit. on p. 87).

Feldman, Susan and Chris Sherman (July 2001). The High Cost of not Finding
Information. Tech. rep. IDC. url: http://www.idc.com (cit. on p. 68).

Fertig, Scott, Eric Thomas Freeman, and David Gelernter (Jan. 1996). “Find-
ing and Reminding. Reconsidered.” In: SIGCHI Bulletin 28.1, pp. 66–69.
issn: 0736-6906. doi: 10.1145/249170.249187 (cit. on p. 81).

Freeman, Eric Thomas (May 1997). “The Lifestreams Software Architec-
ture.” PhD thesis. Yale University Department of Computer Science.
url: http://www.cs.yale.edu/homes/freeman/dissertation/etf.pdf
(cit. on pp. 23, 25).

Freeman, Eric Thomas and Scott Fertig (1995). “Lifestreams: Organizing
your Electronic Life.” In: AAAI Fall Symposium: AI Applications in Knowl-
edge Navigation and Retrieval. Association for the Advancement of Arti-
ficial Intelligence, pp. 38–44. url: http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.48.6769&rank=4 (cit. on pp. 23, 24).

Freeman, Eric Thomas and David Gelernter (1996). “Lifestreams: A Storage
Model for Personal Data.” In: ACM SIGMOD Bulletin 25, pp. 80–86 (cit.
on pp. 23, 234).

Furnas, George W., Caterina Fake, et al. (Apr. 2006). “Why Do Tagging Sys-
tems Work?” In: Proc. SIGCHI Conference on Human Factors in Comput-
ing Systems (CHI 2006) Extended Abstracts. Montréal, Québec, Canada:
ACM, pp. 36–39. doi: 10.1145/1125451.1125462 (cit. on p. 89).

Furnas, George W., Thomas K. Landauer, et al. (Nov. 1987). “The Vocabu-
lary Problem in Human-System Communication.” In: Communications
of the ACM 30.11. Ed. by Henry Ledgard, pp. 964–971. doi: 10.1145/
32206.32212 (cit. on p. 84).

Gemmell, Jim, Gordon Bell, and Roger Lueder (Jan. 2006). “MyLifeBits:
A Personal Database for Everything.” In: Communications of the ACM
49.1, pp. 88–95. issn: 0001-0782. doi: 10.1145/1107458.1107460. url:
http://research.microsoft.com/pubs/64157/tr-2006-23.pdf (cit.
on pp. 42–44, 64).

Gemmell, Jim, Lyndsay Williams, et al. (2004). “Passive capture and en-
suing issues for a personal lifetime store.” In: Proceedings of the the 1st
ACM workshop on Continuous archival and retrieval of personal experiences.

218

http://ceur-ws.org/Vol-401/iswc2008pd_submission_8.pdf
http://www.idc.com
http://dx.doi.org/10.1145/249170.249187
http://www.cs.yale.edu/homes/freeman/dissertation/etf.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.6769&rank=4
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.6769&rank=4
http://dx.doi.org/10.1145/1125451.1125462
http://dx.doi.org/10.1145/32206.32212
http://dx.doi.org/10.1145/32206.32212
http://dx.doi.org/10.1145/1107458.1107460
http://research.microsoft.com/pubs/64157/tr-2006-23.pdf

Bibliography

CARPE’04. New York, New York, USA: ACM, pp. 48–55. isbn: 1-58113-
932-2. doi: 10.1145/1026653.1026660 (cit. on p. 44).

Gibson, Timothy J., Ethan L. Miller, and Darrell D. E. Long (Dec. 1998).
“Long-term File Activity and Inter-Reference Patterns.” In: Int. CMG
Conference. Anaheim, California, USA: Computer Measurement Group,
pp. 976–987. doi: 10 . 1 . 1 . 34 . 2476. url: http : / / new . cmg . org /

proceedings/1998/8100.pdf (cit. on pp. 35, 66, 89, 104).
Gifford, David K. et al. (Oct. 1991). “Semantic File Systems.” In: Proc. 13th

ACM Symposium on Operating Systems Principles (SOSP 1991). Pacific
Grove, California, USA: ACM, pp. 16–25. doi: 10.1145/121132.121138.
url: http://cgs.csail.mit.edu/history/publications/Papers/sfs.
ps (cit. on pp. 45, 46, 101).

Golovchinsky, Gene and Abdigani Diriye (Oct. 2011). “Session-based search
with Querium.” In: The Fifth Workshop on Human-Computer Interaction
and Information Retrieval (HCIR). Mountain View, California, USA (cit.
on p. 61).

Gonçalves, Daniel J. and Joaquim A. Jorge (June 2003). “An Empirical Study
of Personal Document Spaces.” In: Proc. 10th International Workshop on
Design, Specification and Verification of Interactive Systems (DSV-IS 2003).
Vol. 2844. LNCS. Funchal, Madeira Island, Portugal: Springer, pp. 46–
60. doi: 10.1007/b13960. url: http://virtual.inesc.pt/dsvis03/
papers/05.pdf (cit. on p. 79).

Haraty, Mona et al. (2012). “Individual Differences in Personal Task Man-
agement: a Field Study in an Academic Setting.” In: Proceedings of the
2012 Graphics Interace Conference. GI ’12. Toronto, Ontario, Canada: Cana-
dian Information Processing Society, pp. 35–44. isbn: 978-1-4503-1420-
6. url: http://monaharaty.com/drupal-6.14/files/webfm/Haraty-
GI2012.pdf (cit. on p. 71).

Harzl, Annemarie et al. (Sept. 2012). tagstore – Formal Experiment 2011-04.
Tech. rep. Graz, Austria: Graz University of Technology. url: https:
//github.com/novoid/2011-04-tagstore-formal-experiment/ (cit.
on pp. 172, 182, 183, 195).

Hearst, Marti A. (Sept. 2000). “Next Generation Web Search: Setting Our
Sites.” In: IEEE Bulletin of the Technical Committee on Data Engineering
23.3, pp. 38–48. url: http://sites.computer.org/debull/A00SEP-
CD.pdf (cit. on p. 60).

219

http://dx.doi.org/10.1145/1026653.1026660
http://dx.doi.org/10.1.1.34.2476
http://new.cmg.org/proceedings/1998/8100.pdf
http://new.cmg.org/proceedings/1998/8100.pdf
http://dx.doi.org/10.1145/121132.121138
http://cgs.csail.mit.edu/history/publications/Papers/sfs.ps
http://cgs.csail.mit.edu/history/publications/Papers/sfs.ps
http://dx.doi.org/10.1007/b13960
http://virtual.inesc.pt/dsvis03/papers/05.pdf
http://virtual.inesc.pt/dsvis03/papers/05.pdf
http://monaharaty.com/drupal-6.14/files/webfm/Haraty-GI2012.pdf
http://monaharaty.com/drupal-6.14/files/webfm/Haraty-GI2012.pdf
https://github.com/novoid/2011-04-tagstore-formal-experiment/
https://github.com/novoid/2011-04-tagstore-formal-experiment/
http://sites.computer.org/debull/A00SEP-CD.pdf
http://sites.computer.org/debull/A00SEP-CD.pdf

Bibliography

Hearst, Marti A. (2006). “Design Recommendations for Hierarchical Faceted
Search Interfaces.” In: ACM SIGIR Workshop on Faceted Search, pp. 1–5.
url: http://flamenco.berkeley.edu/papers/faceted-workshop06.
pdf (cit. on p. 60).

Hearst, Marti A. (Oct. 2009). Search User Interfaces. Cambridge University
Press. isbn: 0521113792 (cit. on pp. 59, 60, 66, 233).

Hearst, Marti A. (Nov. 2011). “’Natural’ Search User Interfaces.” In: Commu-
nications of the ACM 54.11, pp. 60–67. doi: 10.1145/2018396.2018414.
url: http://cacm.acm.org/magazines/2011/11/138216-natural-
search-user-interfaces/fulltext (cit. on p. 66).

Hearst, Marti A. et al. (Sept. 2002). “Finding the Flow in Web Site Search.”
In: Communications of the ACM 45.9, pp. 42–49. doi: 10.1145/567498.
567525. url: http://flamenco.berkeley.edu/papers/cacm02.pdf (cit.
on p. 60).

Helic, Denis et al. (Aug. 2010). “On the Navigability of Social Tagging Sys-
tems.” In: Proceedings of the 2010 IEEE Second International Conference on
Social Computing, SocialCom / IEEE International Conference on Privacy, Se-
curity, Risk and Trust, PASSAT 2010. Ed. by Ahmed K. Elmagarmid and
Divyakant Agrawal. Minneapolis, Minnesota, USA: IEEE Computer So-
ciety, pp. 161–168. isbn: 978-0-7695-4211-9. doi: 10.1109/SocialCom.
2010.31 (cit. on p. 87).

Helic, Denis et al. (2011). “Are Tag Clouds Useful for Navigation? A Network-
Theoretic Analysis.” In: International Journal of Social Computing and Cyber-
Physical Systems 1.1, pp. 33–55. doi: 10.1504/IJSCCPS.2011.043603 (cit.
on p. 87).

Houben, Steven (Nov. 2011). “Activity Theory Applied to the Desktop
Metaphor.” MA thesis. Diepenbeek, Belgium: Hasselt University. url:
http://itu.dk/people/shou/pubs/StevenHoubenMasterThesis.pdf

(cit. on p. 82).
Hsieh, J. L. et al. (Apr. 2008). “A Web-based Tagging Tool for Organizing

Personal Documents on PCs.” In: International Conference of Computer-
Human Interaction 2008 (CHI2008). Florence, Italy. url: http://works.
bepress.com/lucemia/18/ (cit. on p. 138).

Hurst, Mark (2007). Bit Literacy: Productivity in the Age of Information and E-
mail Overload. 1st. New York, USA: Good Experience. isbn: 0979368103

(cit. on p. 72).

220

http://flamenco.berkeley.edu/papers/faceted-workshop06.pdf
http://flamenco.berkeley.edu/papers/faceted-workshop06.pdf
http://dx.doi.org/10.1145/2018396.2018414
http://cacm.acm.org/magazines/2011/11/138216-natural-search-user-interfaces/fulltext
http://cacm.acm.org/magazines/2011/11/138216-natural-search-user-interfaces/fulltext
http://dx.doi.org/10.1145/567498.567525
http://dx.doi.org/10.1145/567498.567525
http://flamenco.berkeley.edu/papers/cacm02.pdf
http://dx.doi.org/10.1109/SocialCom.2010.31
http://dx.doi.org/10.1109/SocialCom.2010.31
http://dx.doi.org/10.1504/IJSCCPS.2011.043603
http://itu.dk/people/shou/pubs/StevenHoubenMasterThesis.pdf
http://works.bepress.com/lucemia/18/
http://works.bepress.com/lucemia/18/

Bibliography

Huynh, David, David R. Karger, and Dennis Quan (May 7, 2002). “Haystack:
A Platform for Creating, Organizing and Visualizing Information Using
RDF.” In: Proc. International Workshop on the Semantic Web (WWW 2002).
Hawaii, USA. url: http://semanticweb2002.aifb.uni-karlsruhe.
de/proceedings/Research/huynh.pdf (cit. on p. 29).

Huynh, David, David R. Karger, Dennis Quan, and Vineet Sinha (Jan.
2003). “Haystack: A Platform for Creating, Organizing and Visualiz-
ing Semistructured Information.” In: Proc. 8th International Conference on
Intelligent User Interfaces (IUI ’03). Miami, Florida, USA: ACM, pp. 323–
323. isbn: 1581135866. doi: 10.1145/604045.604116 (cit. on p. 29).

Jarrett, D. and Philips Business Systems (1982). The Electronic Office: a Man-
agement Guide to the Office of the Future. Gower, with Philips Business
Systems. isbn: 0566034093 (cit. on p. 64).

Johnson, Jeff et al. (1989). “The XEROX Star: A Retrospective.” In: Computer
22.9, pp. 11–26. url: https://wiki.cs.umd.edu/cmsc434_f09/images/
c/cb/Xerox.pdf (cit. on p. 5).

Jones, William P. (Nov. 15, 2007). Keeping Found Things Found: The Study and
Practice of Personal Information Management. Morgan Kaufmann. isbn:
0123708664 (cit. on pp. 67, 68, 72, 236).

Jones, William P. (Mar. 2012). The Future of Personal Information Management,
Part I: Our Information, Always and Forever. Morgan & Claypool. doi: 10.
2200/S00411ED1V01Y201203ICR021. url: http://www.morganclaypool.
com/doi/abs/10.2200/S00411ED1V01Y201203ICR021 (cit. on pp. 67,
237).

Jones, William P., Harry Bruce, et al. (Nov. 2009). “Providing for Paper,
Place and People in Personal Projects.” In: PIM09 ASIS&T 2009 Work-
shop, Vancouver, BC, Canada. Vancouver, BC, Canada: ACM. url: http:
//pimworkshop.org/2009/index.php?page=acceptedpapers (cit. on
pp. 52, 71).

Mynatt, Elizabeth D. et al., eds. (Apr. 2010). Planz to Put Our Digital Infor-
mation in its Place. Atlanta, Georgia, USA, pp. 2803–2812. isbn: 978-1-
60558-930-5. doi: 10.1145/1753846.1753866 (cit. on pp. 54, 89).

Jones, William P., Predrag Klasnja, et al. (Apr. 2008). “The Personal Project
Planner: Planning to Organize Personal Information.” In: International
Conference of Computer-Human Interaction 2008 (CHI2008). Florence, Italy.
Pp. 681–684 (cit. on p. 53).

221

http://semanticweb2002.aifb.uni-karlsruhe.de/proceedings/Research/huynh.pdf
http://semanticweb2002.aifb.uni-karlsruhe.de/proceedings/Research/huynh.pdf
http://dx.doi.org/10.1145/604045.604116
https://wiki.cs.umd.edu/cmsc434_f09/images/c/cb/Xerox.pdf
https://wiki.cs.umd.edu/cmsc434_f09/images/c/cb/Xerox.pdf
http://dx.doi.org/10.2200/S00411ED1V01Y201203ICR021
http://dx.doi.org/10.2200/S00411ED1V01Y201203ICR021
http://www.morganclaypool.com/doi/abs/10.2200/S00411ED1V01Y201203ICR021
http://www.morganclaypool.com/doi/abs/10.2200/S00411ED1V01Y201203ICR021
http://pimworkshop.org/2009/index.php?page=acceptedpapers
http://pimworkshop.org/2009/index.php?page=acceptedpapers
http://dx.doi.org/10.1145/1753846.1753866

Bibliography

Jones, William P., Ammy J. Phuwanartnurak, et al. (Apr. 2005). “Don’t
Take My Folders Away! Organizing Personal Information to Get Things
Done.” In: CHI ’05: CHI ’05 extended abstracts on Human factors in com-
puting systems. Portland, Oregon, USA: ACM Press, pp. 1505–1508. doi:
dx.doi.org/10.1145/1056808.1056952 (cit. on p. 51).

Jones, William P. and Jaime Teevan (2007). Personal Information Management.
University of Washington Press. isbn: 9780295987378 (cit. on pp. 9, 31,
67, 234).

Jr., Dan R. Olsen et al., eds. (Apr. 2009). Proceedings of the 27th Interna-
tional Conference on Human Factors in Computing Systems, CHI2009. ACM.
Boston, MA, USA: ACM. isbn: 978-1-60558-246-7.

Kaptelinin, Victor (Apr. 2003). “UMEA: Translating Interaction Histories
Into Project Contexts.” In: CHI. Ed. by Gilbert Cockton and Panu Ko-
rhonen. Ft. Lauderdale, Florida, USA, pp. 353–360. isbn: 1-58113-630-7.
doi: 10.1145/642611.642673 (cit. on p. 53).

Kelly, Liadh, Daragh Byrne, and Gareth J.F. Jones (Nov. 2009). “The Role
Of Places And Spaces In Lifelog Retrieval.” In: PIM09 ASIS&T 2009
Workshop, Vancouver, BC, Canada. Vancouver, BC, Canada: ACM. url:
http://pimworkshop.org/2009/index.php?page=acceptedpapers (cit.
on p. 44).

Kim, Jinyoung (Oct. 2011). “Evaluating an Associative Browsing Model by
Simulation.” In: The Fifth Workshop on Human-Computer Interaction and
Information Retrieval (HCIR). Mountain View, California, USA (cit. on
pp. 57, 100, 231).

Kim, Jinyoung et al. (2010). “Building a Semantic Representation for Per-
sonal Information.” In: CIKM. Ed. by Jimmy Huang et al. ACM, pp. 1741–
1744. isbn: 978-1-4503-0099-5. doi: 10.1145 /1871437.1871718. url:
http://people.cs.umass.edu/~abakalov/papers/cikm10-pim.pdf

(cit. on pp. 55, 56, 58, 87, 231).
Körner, Christian et al. (June 2010). “Of Categorizers and Describers: An

Evaluation of Quantitative Measures for Tagging Motivation.” In: Proc.
21st ACM Conference on Hypertext and Hypermedia (Hypertext 2010). Toronto,
Ontario, Canada: ACM, pp. 157–166. isbn: 1450300413. doi: 10.1145/
1810617 . 1810645. url: http : / / kmi . tugraz . at / staff / markus /

documents/2010_HT2010_Categorizers_Describers.pdf (cit. on pp. 70,
232).

222

http://dx.doi.org/dx.doi.org/10.1145/1056808.1056952
http://dx.doi.org/10.1145/642611.642673
http://pimworkshop.org/2009/index.php?page=acceptedpapers
http://dx.doi.org/10.1145/1871437.1871718
http://people.cs.umass.edu/~abakalov/papers/cikm10-pim.pdf
http://dx.doi.org/10.1145/1810617.1810645
http://dx.doi.org/10.1145/1810617.1810645
http://kmi.tugraz.at/staff/markus/documents/2010_HT2010_Categorizers_Describers.pdf
http://kmi.tugraz.at/staff/markus/documents/2010_HT2010_Categorizers_Describers.pdf

Bibliography

Kreyszig, Erwin (1993). Advanced Engineering Mathematics. 7th. Wayne An-
derson. isbn: 0-471-59989-1 (cit. on p. 95).

Lane, David M. et al. (2005). “Hidden costs of graphical user interfaces:
Failure to make the transition from menus and icon toolbars to key-
board shortcuts.” In: International Journal of Human-Computer Interaction
18.1, pp. 133–144. url: http://www.tandfonline.com/doi/abs/10.
1207/s15327590ijhc1802_1 (cit. on pp. 70, 88).

Lansdale, Mark W. (Mar. 1988). “The Psychology of Personal Information
Management.” In: Applied Ergonomics 19.1, pp. 55–66. issn: 0003-6870.
doi: 10.1016/0003-6870(88)90199-8. url: http://simson.net/ref/
1988/Lansdale88.pdf (cit. on pp. 13, 16, 66, 73, 81, 84, 85, 88, 93, 100).

Leung, Andrew W. et al. (2008). “Measurement and Analysis of Large-
Scale Network File System Workloads.” In: USENIX Annual Technical
Conference. Ed. by Rebecca Isaacs and Yuanyuan Zhou. Boston, MA,
USA: USENIX Association, pp. 213–226. isbn: 978-1-931971-59-1. url:
http://www.usenix.org/events/usenix08/tech/full_papers/leung/

leung.pdf (cit. on pp. 35, 66, 104).
Lewis, James R. and Jeff Sauro (2012). Quantifying the user Experience: Prac-

tical Statistics for User Research. Denver, Colorado, USA: Measuring Us-
ability LLC. isbn: 9781470025571 (cit. on p. 161).

Malhotra, Jyoti, Prachi Sarode, and Aparna Kamble (Apr. 2012). “A Re-
view of various techniques and approaches of Data Deduplication.” In:
International Journal of Engineering Practices 1.1. issn: 2277-9701 (cit. on
p. 79).

Malone, Thomas W. (Jan. 1983). “How do People Organize Their Desks?:
Implications for the Design of Office Information Systems.” In: Trans-
actions on Information Systems 1.1, pp. 99–112. issn: 1046-8188. doi: 10.
1145/357423.357430 (cit. on pp. 12, 19, 51, 100, 113, 234).

Marsden, Gary and David E. Cairns (Sept. 2003). “Improving the Usability
of the Hierarchical File System.” In: Proc. Annual Research Conference of
the South African Institute of Computer Scientists and Information Technolo-
gists on Enablement through Technology (SAICSIT 2003). Fourways, RSA:
South African Institute for Computer Scientists and Information Tech-
nologists (SAICSIT), pp. 122–129. isbn: 1581137745. url: http://pubs.
cs.uct.ac.za/archive/00000190/01/saicsit2003-dec.pdf (cit. on
pp. 41, 42).

223

http://www.tandfonline.com/doi/abs/10.1207/s15327590ijhc1802_1
http://www.tandfonline.com/doi/abs/10.1207/s15327590ijhc1802_1
http://dx.doi.org/10.1016/0003-6870(88)90199-8
http://simson.net/ref/1988/Lansdale88.pdf
http://simson.net/ref/1988/Lansdale88.pdf
http://www.usenix.org/events/usenix08/tech/full_papers/leung/leung.pdf
http://www.usenix.org/events/usenix08/tech/full_papers/leung/leung.pdf
http://dx.doi.org/10.1145/357423.357430
http://dx.doi.org/10.1145/357423.357430
http://pubs.cs.uct.ac.za/archive/00000190/01/saicsit2003-dec.pdf
http://pubs.cs.uct.ac.za/archive/00000190/01/saicsit2003-dec.pdf

Bibliography

Mathis, Lukas (Aug. 2011). Designed for Use – Create Usable Interfaces for
Applications and the Web. Ed. by Jill Steinberg. 2nd. The Pragmatic Pro-
grammers (cit. on p. 142).

McGrath, Joseph E. (Apr. 1995). “Methodology Matters: Doing Research
in the Behavioral and Social Sciences.” In: Human-Computer Interaction:
Toward the Year 2000. Ed. by Ronald M. Baecker et al. Second. Morgan
Kaufmann. Chap. 2, pp. 152–169. isbn: 1558602461. url: http://www.
ufpa.br/cdesouza/teaching/es/2000-mcgrath.pdf (cit. on p. 9).

Mohan, Prashanth, Venkateswaran S Raghuraman, and Arul Siromoney
(Dec. 2006). Semantic File Retrieval in File Systems Using Virtual Direc-
tories. Poster Session of the 13th Annual IEEE International Confer-
ence on High Performance Computing (HiPC), Bangalore, India (cit.
on pp. 46, 47, 96).

Morville, Peter and Lou Rosenfeld (2006). Information Architecture for the
World Wide Web. 3rd. O’Reilly. isbn: 978-0-596-52734-1 (cit. on p. 68).

Nielsen, Jakob (Feb. 1996). The Death of File Systems. url: http://www.
useit.com/papers/filedeath.html (cit. on pp. 82, 100).

Orlowski, Andrew (Mar. 2002). Windows on a database – sliced and diced by
BeOS vets. Interview with Dominic Giampaolo and Benoit Schillings of
Be (cit. on p. 86).

Pak, Richard, Steven Pautz, and Rebecca Iden (2007). “Information Organi-
zation and Retrieval: A Comparison of Taxonomical and Tagging Sys-
tems.” In: Cognitive Technology 12.1, pp. 31–44. url: http://business.
clemson.edu/Catlab/pubs/pak-pautz-iden-2007.pdf (cit. on p. 138).

Peres, S. Camille et al. (Sept. 2004). “Keyboard shortcut usage: The roles
of social factors and computer experience.” In: Proceedings of the Human
Factors and Ergonomics Society Annual Meeting. Vol. 48. 5. SAGE Publica-
tions, pp. 803–807. url: http://pro.sagepub.com/content/48/5/803.
short (cit. on pp. 70, 73).

Perugini, Saverio (2009). “Supporting Multiple Paths to Objects in Informa-
tion Hierarchies: Faceted Classification, Faceted Search, and Symbolic
Links.” In: Information Processing and Management 46.1, pp. 22–43. doi:
10.1016/j.ipm.2009.06.007 (cit. on pp. 59, 82, 100, 238).

Peters, Isabella and Katrin Weller (Sept. 2008). “Tag Gardening for Folk-
sonomy Enrichment and Maintenance.” In: Webology 5.3. url: http:
//www.webology.ir/2008/v5n3/a58.html (cit. on p. 120).

224

http://www.ufpa.br/cdesouza/teaching/es/2000-mcgrath.pdf
http://www.ufpa.br/cdesouza/teaching/es/2000-mcgrath.pdf
http://www.useit.com/papers/filedeath.html
http://www.useit.com/papers/filedeath.html
http://business.clemson.edu/Catlab/pubs/pak-pautz-iden-2007.pdf
http://business.clemson.edu/Catlab/pubs/pak-pautz-iden-2007.pdf
http://pro.sagepub.com/content/48/5/803.short
http://pro.sagepub.com/content/48/5/803.short
http://dx.doi.org/10.1016/j.ipm.2009.06.007
http://www.webology.ir/2008/v5n3/a58.html
http://www.webology.ir/2008/v5n3/a58.html

Bibliography

Pirrer, Michael (2012). Implementing a Help System for tagstore. Tech. rep.
Graz, Austria: Graz University of Technology (cit. on p. 130).

Proceedings of the Personal Information Management Workshop at the ASIS&T
2009 (PIM2009) (Nov. 2009). Vancouver, BC, Canada: ACM. url: http:
//pimworkshop.org/2009/.

Quan, Dennis et al. (Sept. 2003). “User Interfaces for Supporting Multi-
ple Categorization.” In: Proc. 9th IFIP TC13 International Conference on
Human-Computer Interaction (INTERACT ’03). Zurich, Switzerland: IOS
Press, pp. 228–235. isbn: 1586033638. url: http://www.idemployee.id.
tue.nl/g.w.m.rauterberg/conferences/INTERACT2003/INTERACT2003-

p228.pdf (cit. on p. 100).
Ranganathan, Sirkali Ramamrita (1933). Colon Classification. Madras Library

Association (cit. on p. 59).
Reinecke, Katharina and Abraham Bernstein (June 2011). “Improving Per-

formance, Perceived Usability, and Aesthetics with Culturally Adaptive
User Interfaces.” In: ACM Transactions on Computer-Human Interaction
(TOCHI) 18.2. doi: 10.1145/1970378.1970382. url: http://people.
seas.harvard.edu/~reinecke/Publications_files/ReineckeBernstein_

ToCHI.pdf (cit. on p. 69).
Rekimoto, Jun (Nov. 1999). “Time-Machine Computing: A Time-centric Ap-

proach for the Information Environment. Interaction Laboratory.” In:
Proc. 12th Annual ACM Symposium on User Interface Software and Tech-
nology (UIST’99). Asheville, North Carolina, USA: ACM. url: http:
//www.sonycsl.co.jp/person/rekimoto/papers/uist99.pdf (cit. on
p. 25).

Rhodes, Bradley J. (May 2000). “Just-In-Time Information Retrieval.” PhD
thesis. Boston/MA, USA: MIT Media Lab (cit. on p. 26).

Rhodes, Bradley J. (2003). “Using Physical Context for Just-in-Time Infor-
mation Retrieval.” In: IEEE Transactions on Computers 52, pp. 1011–1014.
issn: 0018-9340. doi: 10.1109/TC.2003.1223636 (cit. on p. 26).

Rhodes, Bradley J. and P. Maes (2000). “Just-in-time information retrieval
agents.” In: IBM Systems Journal 39.3.4, pp. 685–704. issn: 0018-8670.
doi: 10.1147/sj.393.0685 (cit. on pp. 26, 27).

Rhodes, Bradley J. and Thad Starner (Apr. 1996). “The Remembrance Agent:
A continuously running automated information retrieval system.” In:
The Proceedings of The First International Conference on The Practical Appli-

225

http://pimworkshop.org/2009/
http://pimworkshop.org/2009/
http://www.idemployee.id.tue.nl/g.w.m.rauterberg/conferences/INTERACT2003/INTERACT2003-p228.pdf
http://www.idemployee.id.tue.nl/g.w.m.rauterberg/conferences/INTERACT2003/INTERACT2003-p228.pdf
http://www.idemployee.id.tue.nl/g.w.m.rauterberg/conferences/INTERACT2003/INTERACT2003-p228.pdf
http://dx.doi.org/10.1145/1970378.1970382
http://people.seas.harvard.edu/~reinecke/Publications_files/ReineckeBernstein_ToCHI.pdf
http://people.seas.harvard.edu/~reinecke/Publications_files/ReineckeBernstein_ToCHI.pdf
http://people.seas.harvard.edu/~reinecke/Publications_files/ReineckeBernstein_ToCHI.pdf
http://www.sonycsl.co.jp/person/rekimoto/papers/uist99.pdf
http://www.sonycsl.co.jp/person/rekimoto/papers/uist99.pdf
http://dx.doi.org/10.1109/TC.2003.1223636
http://dx.doi.org/10.1147/sj.393.0685

Bibliography

cation of Intelligent Agents and Multi Agent Technology (PAAM ’96), Lon-
don, UK, pp. 487–495 (cit. on p. 26).

Rodden, Kerry and Michael Leggett (Apr. 2010). “Best of Both Worlds:
Improving Gmail Labels with the Affordances of Folders.” In: Proc.
SIGCHI Conference on Human Factors in Computing Systems (CHI 2010).
Atlanta, Georgia, USA. doi: 10.1145/1753846.1754199. url: http:
//portal.acm.org/citation.cfm?id=1754199 (cit. on p. 86).

Rodden, Kerry and Kenneth R. Wood (Apr. 2003). “How do people man-
age their digital photographs?” In: Proceedings of the 2003 Conference on
Human Factors in Computing Systems, CHI2003. Ed. by Gilbert Cockton
and Panu Korhonen. Ft. Lauderdale, Florida, USA, pp. 409–416. isbn:
1-58113-630-7. doi: 10.1145/642611.642682 (cit. on pp. 55, 82).

Rubin, Jeffrey and Dana Chisnell (2008). Handbook of Usability Testing: How
to Plan, Design, and Conduct Effective Tests. second. Wiley. isbn: 978-0470-
386-088 (cit. on p. 142).

Sauermann, Leo and Dominik Heim (Oct. 2008). “Evaluating Long-Term
Use of the Gnowsis Semantic Desktop for PIM.” In: International Se-
mantic Web Conference. Ed. by Amit P. Sheth et al. Vol. 5318. Lecture
Notes in Computer Science. Karlsruhe, Germany: Springer, pp. 467–
482. isbn: 978-3-540-88563-4. doi: 10.1007/978-3-540-88564-1_30.
url: http://www.springerlink.com/index/C7U686MQ27751373.pdf
(cit. on pp. 40, 55, 70, 89).

Schober, Georg (2012). A Recommender System for Tagging Files and Folders
using tagstore. Tech. rep. Graz, Austria: Graz University of Technology
(cit. on p. 115).

Schulte, Eric and Dan Davison (June 2011). “Active Documents with Org-
Mode.” In: Computing in Science Engineering 13.3, pp. 66 –73. issn: 1521-
9615. doi: 10.1109/MCSE.2011.41 (cit. on p. 53).

Schulte, Eric, Dan Davison, et al. (Jan. 25, 2012). “A Multi-Language Com-
puting Environment for Literate Programming and Reproducible Re-
search.” In: Journal of Statistical Software 46.3, pp. 1–24. issn: 1548-7660.
url: http://www.jstatsoft.org/v46/i03 (cit. on p. 53).

Seltzer, Margo and Nicholas Murphy (May 2009). “Hierarchical File Sys-
tems Are Dead.” In: Proceedings of the 12th Workshop on Hot Topics in
Operating Systems HOTOS09. Monte Verita, Switzerland (cit. on pp. 47,
48, 82).

226

http://dx.doi.org/10.1145/1753846.1754199
http://portal.acm.org/citation.cfm?id=1754199
http://portal.acm.org/citation.cfm?id=1754199
http://dx.doi.org/10.1145/642611.642682
http://dx.doi.org/10.1007/978-3-540-88564-1_30
http://www.springerlink.com/index/C7U686MQ27751373.pdf
http://dx.doi.org/10.1109/MCSE.2011.41
http://www.jstatsoft.org/v46/i03

Bibliography

Sheth, Amit P. et al., eds. (Oct. 2008). The 7th International Semantic Web
Conference, ISWC 2008. Vol. 5318. Lecture Notes in Computer Science.
Karlsruhe, Germany: Springer. isbn: 978-3-540-88563-4.

Shirky, Clay (2005). Ontology is Overrated: Categories, Links and Tags. url:
http://www.shirky.com/writings/ontology_overrated.html (cit. on
pp. 82, 85, 100).

Sinha, Vineet and David R. Karger (2005). “Magnet: Supporting Navigation
in Semistructured Data Environments.” In: Proceedings of the 2005 ACM
SIGMOD international conference on Management of data (SIGMOD ’05).
Baltimore, Maryland: ACM Press, pp. 97–106. isbn: 1-59593-060-4. doi:
10.1145/1066157.1066169. url: http://dl.acm.org/citation.cfm?
id=1066169 (cit. on pp. 29, 30).

Smith, W.R. (Feb. 1994). “The Newton application architecture.” In: Com-
pcon Spring ’94, Digest of Papers. San Francisco, CA, USA, pp. 156–161.
isbn: 0-8186-5380-9. doi: 10.1109/CMPCON.1994.282931 (cit. on p. 208).

Solskinnsbakk, Geir and Jon Gulla (2010). “A Hybrid Approach to Con-
structing Tag Hierarchies.” In: On the Move to Meaningful Internet Sys-
tems, OTM 2010. Ed. by Robert Meersman, Tharam Dillon, and Pilar
Herrero. Vol. 6427. Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg, pp. 975–982. doi: 10.1007/978-3-642-16949-6_22 (cit.
on p. 87).

Sutherland, Ivan Edward (Jan. 1963a). “Sketchpad, a Man-Machine Graph-
ical Communication System.” PhD thesis. Massachuseits, USA: Mas-
sachuseits Institute Of Technology (cit. on p. 21).

Sutherland, Ivan Edward (Jan. 1963b). Sketchpad, a Man-Machine Graphical
Communication System. Tech. rep. 247. based on Sutherland1963 (PhD).
Massachuseits, USA: Massachuseits Institute Of Technology (cit. on
p. 21).

Teevan, Jaime et al. (2004). “The Perfect Search Engine is not enough: a
Study of Orienteering Behavior in Directed Search.” In: Proceedings of
the SIGCHI conference on Human factors in computing systems. CHI ’04.
Vienna, Austria: ACM, pp. 415–422. isbn: 1-58113-702-8. doi: 10.1145/
985692.985745. url: http://people.csail.mit.edu/teevan/work/
publications/papers/chi04.pdf (cit. on pp. 83, 237).

Thacker, C. P. et al. (1979). Alto: A Personal Computer. CSL-79-11. Palo Alto,
CA, USA: XEROX Palo Alto Research Center. url: http://www.computer-

227

http://www.shirky.com/writings/ontology_overrated.html
http://dx.doi.org/10.1145/1066157.1066169
http://dl.acm.org/citation.cfm?id=1066169
http://dl.acm.org/citation.cfm?id=1066169
http://dx.doi.org/10.1109/CMPCON.1994.282931
http://dx.doi.org/10.1007/978-3-642-16949-6_22
http://dx.doi.org/10.1145/985692.985745
http://dx.doi.org/10.1145/985692.985745
http://people.csail.mit.edu/teevan/work/publications/papers/chi04.pdf
http://people.csail.mit.edu/teevan/work/publications/papers/chi04.pdf
http://www.computer-refuge.org/bitsavers/pdf/xerox/parc/techReports/CSL-79-11_Alto_A_Personal_Computer.pdf
http://www.computer-refuge.org/bitsavers/pdf/xerox/parc/techReports/CSL-79-11_Alto_A_Personal_Computer.pdf
http://www.computer-refuge.org/bitsavers/pdf/xerox/parc/techReports/CSL-79-11_Alto_A_Personal_Computer.pdf

Bibliography

refuge.org/bitsavers/pdf/xerox/parc/techReports/CSL-79-11_

Alto_A_Personal_Computer.pdf (cit. on pp. 3, 5).
Tognazzini, Bruce (Dec. 2011). Browse vs. Search: Which Deserves to Go? url:

http://www.asktog.com/columns/085BrowseVsSearch.html (cit. on
p. 70).

Trattner, Christoph et al. (2012). “Exploring the Differences and Similarities
between Hierarchical Decentralized Search and Human Navigation in
Information Networks.” In: Proceedings of the 11th International Confer-
ence on Knowledge Management and Knowledge Technologies. iKNOW ’12.
Graz, Austria: ACM (cit. on p. 101).

Tunkelang, Daniel (2009). Faceted Search. Synthesis Lectures on Informa-
tion Concepts, Retrieval, and Services. Morgan & Claypool Publish-
ers. doi: 10 . 2200 / S00190ED1V01Y200904ICR005. url: http : / / www .

morganclaypool.com/toc/icr/1/1 (cit. on pp. 59–61, 233).
Voida, Stephen and Saul Greenberg (Apr. 2009). “WikiFolders: Augmenting

the Display of Folders to Better Convey the Meaning of Files.” In: CHI.
Ed. by Dan R. Olsen Jr. et al. ACM. Boston, MA, USA: ACM, pp. 1679–
1682. isbn: 978-1-60558-246-7. doi: 10.1145/1518701.1518959 (cit. on
p. 53).

Voida, Stephen and Elizabeth D. Mynatt (Apr. 2009). “It Feels Better than
Filing: Everyday Work Experiences in an Activity-Based Computing
System.” In: Proceedings of the 27th International Conference on Human
Factors in Computing Systems, CHI2009. Ed. by Dan R. Olsen Jr. et al.
ACM. Boston, MA, USA: ACM, pp. 259–268. isbn: 978-1-60558-246-7.
doi: 10.1145/1518701.1518744 (cit. on p. 53).

Voit, Karl, Keith Andrews, and Wolfgang Slany (Nov. 2009). “Why Personal
Information Management (PIM) Technologies Are Not Widespread.”
In: PIM09 ASIS&T 2009 Workshop, Vancouver, BC, Canada. Vancouver,
BC, Canada: ACM, pp. 60–64. url: http://pimworkshop.org/2009/
index.php?page=acceptedpapers (cit. on pp. 75, 118, 209).

Voit, Karl, Keith Andrews, and Wolfgang Slany (Nov. 2011). “TagTree: Stor-
ing and Re-finding Files Using Tags.” In: Proc. 7th Conference of the
Austrian Computer Society Workgroup: Human-Computer Interaction (Usab
2011). Vol. 7058. LNCS. Graz, Austria: Springer, pp. 471–481. isbn: 364-
225-3636. doi: 10.1007/978-3-642-25364-5_33 (cit. on pp. 96, 107,
210).

228

http://www.computer-refuge.org/bitsavers/pdf/xerox/parc/techReports/CSL-79-11_Alto_A_Personal_Computer.pdf
http://www.computer-refuge.org/bitsavers/pdf/xerox/parc/techReports/CSL-79-11_Alto_A_Personal_Computer.pdf
http://www.computer-refuge.org/bitsavers/pdf/xerox/parc/techReports/CSL-79-11_Alto_A_Personal_Computer.pdf
http://www.computer-refuge.org/bitsavers/pdf/xerox/parc/techReports/CSL-79-11_Alto_A_Personal_Computer.pdf
http://www.asktog.com/columns/085BrowseVsSearch.html
http://dx.doi.org/10.2200/S00190ED1V01Y200904ICR005
http://www.morganclaypool.com/toc/icr/1/1
http://www.morganclaypool.com/toc/icr/1/1
http://dx.doi.org/10.1145/1518701.1518959
http://dx.doi.org/10.1145/1518701.1518744
http://pimworkshop.org/2009/index.php?page=acceptedpapers
http://pimworkshop.org/2009/index.php?page=acceptedpapers
http://dx.doi.org/10.1007/978-3-642-25364-5_33

Bibliography

Voit, Karl, Keith Andrews, and Wolfgang Slany (Feb. 2012a). “Creating a
Comparative Environment for PIM Evaluation.” In: PIM12 CSCW 2012
Workshop. Seattle, WA, USA. url: http://pimworkshop.org/2012/
papers (cit. on pp. 76, 107, 211).

Voit, Karl, Keith Andrews, and Wolfgang Slany (May 2012b). “Tagging
Might Not Be Slower Than Filing in Folders.” In: Proceedings of the 2012
ACM Annual Conference on Human Factors in Computing Systems, Ex-
tended Abstracts (CHI2012). CHI ’12. Austin, Texas, USA: ACM, pp. 2063–
2068. isbn: 978-1-4503-1016-1. doi: 10.1145 /2212776.2223753. url:
http://dl.acm.org/citation.cfm?id=2212776.2223753 (cit. on
pp. 145, 211).

Voit, Karl, Keith Andrews, Wolfgang Wintersteller, et al. (Mar. 2011). “Tag-
Tree: Exploring Tag-Based Navigational Structures.” In: 12th Interna-
tionalen Symposium der Informationswissenschaft (ISI). Ed. by Joachim Gries-
baum, Thomas Mandl, and Christa Womser-Hacker. Vol. 58. Informa-
tion und Wissen: global, sozial und frei? Hildesheim, Germany: Werner
Hülsbusch, pp. 516–518. isbn: 978-3-940317-91-9. url: http://www.vwh-
verlag.de/vwh/?p=620 (cit. on pp. 107, 210).

Weinberger, David (2007). Everything Is Miscellaneous: The Power of the New
Digital Disorder. Times Books. isbn: 0-8050-8043-0 (cit. on pp. 80, 82, 85,
100).

Whittaker, Steve, Tara Matthews, et al. (May 2011). “Am I wasting my time
organizing email?: a study of email refinding.” In: Proceedings of the
2011 annual conference on Human factors in computing systems. CHI ’11.
Vancouver, BC, Canada: ACM, pp. 3449–3458. isbn: 978-1-4503-0228-
9. doi: 10.1145/1978942.1979457. url: http://people.ucsc.edu/
~swhittak/papers/chi2011_refinding_email_camera_ready.pdf (cit.
on pp. 40, 89).

Whittaker, Steve and Candace Sidner (1996). “Email overload: exploring
personal information management of email.” In: Proceedings of the SIG-
CHI conference on Human factors in computing systems: common ground.
CHI ’96. Vancouver, British Columbia, Canada: ACM, pp. 276–283. isbn:
0-89791-777-4. doi: 10.1145/238386.238530 (cit. on pp. 19, 72, 113, 234).

Yee, Ka-Ping et al. (Apr. 2003). “Faceted Metadata for Image Search and
Browsing.” In: CHI. Ed. by Gilbert Cockton and Panu Korhonen. Ft.
Lauderdale, Florida, USA, pp. 401–408. isbn: 1-58113-630-7. doi: 10.

229

http://pimworkshop.org/2012/papers
http://pimworkshop.org/2012/papers
http://dx.doi.org/10.1145/2212776.2223753
http://dl.acm.org/citation.cfm?id=2212776.2223753
http://www.vwh-verlag.de/vwh/?p=620
http://www.vwh-verlag.de/vwh/?p=620
http://dx.doi.org/10.1145/1978942.1979457
http://people.ucsc.edu/~swhittak/papers/chi2011_refinding_email_camera_ready.pdf
http://people.ucsc.edu/~swhittak/papers/chi2011_refinding_email_camera_ready.pdf
http://dx.doi.org/10.1145/238386.238530
http://dx.doi.org/10.1145/642611.642681
http://dx.doi.org/10.1145/642611.642681
http://dx.doi.org/10.1145/642611.642681

Bibliography

1145/642611.642681. url: http://kevinli.net/flamenco-chi03.pdf
(cit. on p. 60).

230

http://dx.doi.org/10.1145/642611.642681
http://dx.doi.org/10.1145/642611.642681
http://dx.doi.org/10.1145/642611.642681
http://kevinli.net/flamenco-chi03.pdf

Glossary

absolute path Absolute paths are paths that contain a system-unique path
starting with the system root 1

associative navigation When a person navigates through a strict hierarchy,
she has to remember at which location within the hierarchy she stored
an item. With associative navigation, she does not need to remember
parts of the storage path: she only selects (sub-)categories upon asso-
ciation to the item she is looking for. The more selections she defines,
the more detailed the implicit query gets, that results in a finer set of
results. This method reflects the dominant remembering method of
our brain: associations between things. See also J. Kim et al., 2010 and
J. Kim, 2011.

broken link Symbolic links or shortcuts point to an item either using an
absolute or a relative path. When this path changes for the original
item, symbolic links or shortcuts to this item still point to the old
path. This leads to broken links.

categorizer see describer
controlled vocabulary When a person is only able to use a pre-defined set

of tags to tag an item, this pre-defined set is called a controlled vo-
cabulary (cv).
By using controlled vocabularies, users are able to reduce problems
with homonyms, synonyms, or singular/plural: when a person is us-
ing“university” in her cv, she is not able to tag something with “uni”,
“education”, “universities” or similar by mistake.

CSV comma-separated values
CV controlled vocabulary

1. With Microsoft Windows, the system root is one of the drive letter characters. On all
other operating systems, the system root is (the first) forward slash (/).

231

Glossary

describer Körner et al., 2010 presents the concept of describer and catego-
rizer. These two behavioral patterns reflects the two extreme sides of a
spectrum. On the one side, describing behavioral is when people are
typically using many tags per item, using homonyms and synonyms
as additional tags, and using words from the actual content as tags as
well. On the other side, categorizing behavioral typically stands for
people who are using less tags per item, using tags to put the item
in a higher context, and therefore some tags are not even part of the
item content at all.
In this thesis, I embrace this concept of user behavior and re-uses this
concept slightly different: instead of user who has a certain tendency
towards describing or categorizing behavior, there are tags that reflect
a certain tendency for being a descriptive tag or for being a categoriz-
ing tag. In order to do research with this concept, test users are being
confronted with two distinct lines for tagging: in one tag line users
are asked to put in descriptive tags and in the other tag line users are
asked to find tags that categorize the item.

desktop metaphor Alan Kay first introduced the desktop metaphor while
working at Xerox Palo Alto Research Center (parc) in 1970. Before
that, computers could only be used by special trained persons. The
common interface was text-based where the user had to remember
computer commands. With the development of the Graphical User
Interface (gui), even less trained persons were able to interact with
a computer. In order to help those untrained persons even more, the
desktop metaphor introduces concepts of already known real world
elements to the virtual world of the computer. Display elements such
as a desktop surface (the screen surface), files (paper files), folders
(paper file folders), drawers (remote network computer folders), and
printer icons helped users to transfer interaction knowledge from the
real world to the virtual world (see Figure 1.2, page 5). Therefore,
even novice computer users could guess that dropping a file onto a
folder leads to a file movement to this folder.

desktop search In the last decade, numerous software product solutions
were developed to crawl and index local data pools. Desktop search
engines provide a search interface in order to find local information.

DFA deterministic finite automaton
directory In early computer file systems, files and sub-directories were

232

Glossary

combined within directories forming a hierarchically-structured file
system. With the development of the desktop metaphor, gui sys-
tems started to use the name folders for directories to emphasize the
metaphor of a physical paper folder. gui operating systems of the
1970s and Apple’s operating systems were using the term folder. Mi-
crosoft used the term directory and changed to the term folder with
the introduction of Windows 95.
Therefore, directories are a concept of the file system and folders are
a concept of the user interface.

ext2fs The ext2 or second extended filesystem is a file system for the Linux
kernel. 2

faceted navigation see faceted search
faceted search In Hearst, 2009, p. 188f and Tunkelang, 2009, the authors

describe a technique named “Faceted Navigation” or “Faceted Search”.
This technique has properties from search as well as from navigation
and can be seen as an in-between method.
Values like “nine”, “ten”, “black”, and “brown” are associated to dis-
tinct categories (facets) like “shoe size” and “shoe color”. The user in-
terface allows selection of values for each facet like “shoe size: nine”
and “color: black”. The result set is filtered accordingly. For details,
see Section 2.2.20 on page 59.

FAQ Frequently Asked Questions
file A file is the smallest (user-relevant) information-containing entity with-

in a file system. End user applications store their data in files that have
special file formats. The concept of files is an invention of the 1950s.

file extension A file extension reflects the internal file format. By conven-
tion, the last part of a file name consists of a dot followed by a (usu-
ally) three letter abbreviation.
For example the file Letter to John.pdf (with its file extension .pdf)
is usually a file in portable document format (pdf) file format defined
by the company Adobe. Modern operating systems use file extensions
to determine which user application to use for opening a certain file.

file system Current operating systems 3 use traditional file systems like

2. https://en.wikipedia.org/wiki/Ext2fs – retrieved on 2012-08-15.
3. Microsoft Windows 7, Mac OS X 10.7, Linux v3.4

233

https://en.wikipedia.org/wiki/Ext2fs

Glossary

New Technology File System (ntfs), Hierarchical File System Plus
(hfs), (V)FAT, or ext2fs to store and manage system and user files.
Common to all of those file systems is an inode management struc-
ture using a strict hierarchy. This thesis proposes a different kind of
management principle for system files and user files. In this docu-
ment, the term file system is used in the traditional way. See also
W. P. Jones and Teevan, 2007, p. 137f.

filer Inspired by the famous Malone, 1983 paper, many studies like Whit-
taker and Sidner, 1996 or Alvarado et al., 2003 adopted the terms
“filer” and “piler” to classify user behavior. People who show filer
behavior tend to organize things neatly in well-developed categories,
have less clutter in their working space, and few emails in their in-
box. Pilers tend to stack documents and things into piles. Each pile
may have a special meaning to the user, like important things, urgent
things, things that might be important.

folder A computer folder is a virtual container of one or more files and
one or more sub-folders in a gui. A folder may reflect the content of a
directory of the file system. Virtual folders reflect the results of search
queries or other dynamically generated sets of files and folders.

folder hierarchy File systems are designed to hold a strict hierarchy of
directories containing other directories and/or files (see Figure 3.1,
page 78). Folder hierarchies were developed in the 1960s (see Free-
man and Gelernter, 1996).

GPL gnu General Public License
Graphical User Interface In contrast to text-based computer interfaces, gui-

based computer interfaces allow graphical elements such as images
to interact with a user (see Figure 1.2, page Figure 5). Display ele-
ments can be manipulated directly, typically by using a mouse, a com-
puter pointing device. In recent years, touch screen systems which al-
low screen element manipulation with one or more fingertips (multi-
touch) have become popular.

GTD Getting Things Done
GUI Graphical User Interface

hard link Most file systems implement hard links in a way that they are
alternative representations of an item. Unlike symbolic links or short-
cuts which are links to absolute or relative paths (item names), hard

234

Glossary

links represent an alternative item name to the identical item.
There can not be a broken hard link: when one item name gets re-
named, all other hard links referring to the same file stay untouched
and working. Only when the last hard link that links to an item gets
deleted, the item gets deleted.

HDD Hard Disk Drive
HFS Hierarchical File System Plus

inode The smallest file- or directory-related information entity managed by
a file system. Usually, a file is stored in a set of linear linked inodes.
A link or a directory consists of a single inode.
The size of an inode is defined by the so called chunk size of the file
system which is set-up while being instantiated. Typically, an inode
has 4.096 Bytes. A file system is only able to store files in multiples of
inode size quantities. This means that a file which stores 42 Bytes uses
up 4.096 Bytes on the hard disk. The difference of 4.052 Bytes is part
of the “internal fragmentation”. In extreme cases this could lead to a
full partition with stored data of a fraction of the partition capacity.
Most file systems have a hard limit on the number of inodes. 4

item In this thesis, the term “item” refers to either a file or a folder.

KISS keep it short and simple

link In this thesis the term link refers to either a symbolic link, a hard link,
or a shortcut. In context of the tagstore software, a link refers to either
a symbolic link (Linux, Mac os x) or a shortcut (Microsoft Windows).

metadata Data describing the content or the structure of other data is
called metadata. Baeza-Yates and Ribeiro-Neto (2011, p. 205) define
metadata as “information on the organization of the data, the various
data domains, and the relationship between them. In short, metadata
is ‘data about the data’.”

MVC Model-View-Controller

navigation A person who inspects contents of (sub-)folders in a software
interface that visualizes (only parts of) the file system hierarchy is us-
ing the navigation method. Re-finding information using navigation

4. There are some exceptions to this fact. For example in Extended File System (xfs),
inodes are assigned dynamically and therefore can hold much more entities.

235

Glossary

relates to recognition. In contrast to search, no queries have to be en-
tered explicitly.
An exhaustive collection on definitions related to the terms “navi-
gation” or “browsing” 5 can be found in Rice2001 Baeza-Yates and
Ribeiro-Neto, 2011, p. 24, and W. P. Jones, 2007, p. 93ff. This thesis
does not limit user behavior to orienteering, random browsing, di-
rected, undirected, semidirected, or undirected browsing only. The
subject of this work is not the reasoning about the motivation of a
person who uses tools for navigation. Although these more elaborate
definitions might get important for interpreting the results.

NTFS New Technology File System

PARC Palo Alto Research Center
partition Physical hard disks are divided into smaller logical entities which

are called partitions.
In Microsoft operating systems, partitions are addressed using drive
letters like C:. In all other major operating systems, drives are mapped
to directories. These mapping directories are called “mount points”.
Historically the division of a hard drive into partitions was necessary
because early operating systems could not address the large memory
of a single drive in one logical entity. Modern operating systems are
able to address even very large hard drives 6 in one single partition.

path A path to an item consists of a set of directories or folders and
an optional file. The different components of a path are separated
by system-dependent path separation characters. Microsoft Windows
uses backward slashes (\) and all other operating systems use for-
ward slashes (/) as path separator characters.

PDF portable document format
piler see filer
PIM Personal Information Management

Quantified Self The Quantified Self movement was proclaimed by two on-
line magazine editors in 2007. People practicing the Quantified Self
use modern technology to collect and analyze all kinds of data which
relates to them personally. It can be used to track physical shape,

5. The two terms are being used as synonyms throughout most papers.
6. Currently, the largest hard disks available are 4 Terabytes.

236

Glossary

health issues, or generate personal behavior statistics just for the fun
of doing it.

QUIS Questionnaire for User Interaction Satisfaction

RDF Resource Description Framework
relative path When an item is referred to by a relative path, the source of

the path resolution is the current working directory.
For example, the relative path ./afile.txt refers to the item afile.txt

in the current directory 7.
The relative path ../../subdir1/anotherfile.txt points to the item
anotherfile.txt which resides in the directory subdir1 which itself
resides two directories 8 in the direction of the system root.

RSS Rich Site Summary

search In a search, the user formulates a search query for the search in-
terface. The systems provides a result set and, probably, methods to
filter the result set. Users scan through the result set, re-formulate
a different search query, find the information they were seeking for,
or start a navigation process within the preposed results. The term
teleporting is sometimes used in the same manner as search (see Al-
varado et al., 2003; Chau, Myers, and Faulring, 2008b) and sometimes
it is differentiated (see Teevan et al., 2004, W. P. Jones, 2012, p. 18).
This thesis concentrates solely on navigation and not on search. I
think that search and navigation are both methods that every user
should be able to use on all kinds of information.

semantic web The semantic web denotes a highly metadata-enriched ver-
sion of the Internet where semantic data technology is used to link
and query information.

shortcut Microsoft Windows uses special files, which are called shortcuts,
instead of links. Those shortcut files are files with the hidden 9 file ex-
tension .lnk. The file content contains an absolute path to the target
item.
Unlike symbolic links and hard links which are part of the file system

7. The dot stands for the current working directory.
8. Two dots stand for the directory which contains the current directory.
9. The file extension .lnk is hidden independently of the setting “Hide extensions for

known file types”.

237

Glossary

layer, shortcuts are an extension of Windows Explorer. Any software
product that has to interpret shortcut files, has to implement support
for them.
Due to the fact that shortcut files have to be interpreted by user-space
software to be resolved, using many shortcut files may arise perfor-
mance issues.

SIS Stuff I’ve Seen
social tagging Systems, where different persons see other persons’ tags as-

sociated to information and are able to add tags by themselves are
social tagging systems. Through the power of the crowd, more promi-
nent tags evolve while infrequent or fuzzy tags allow for finding in-
formation even with vaguer search queries. Due to the nature of the
method proposed, this thesis does not cover social tagging aspects.

SSD Solid State Drive
strict hierarchy A strict hierarchy is an acyclically directed graph. It is a

tree without cyclic relations 10, where one node is contained only in
one (father-) node. Nodes can have zero to many sub-nodes.

SVN Subversion
symbolic link An inode that refers to an inode of an item is called a sym-

bolic link (in short: symlink). With symbolic links, a user can create
an alias to a file or folder that is probably located in a different folder.
Microsoft Windows uses ntfs as its file system. Although ntfs pro-
vides technical representations of links, Windows does not offer any
usable user-space tools to maintain links. Instead, Windows uses so-
called shortcut files. All other operating systems use file systems that
implement symbolic links. See also Perugini (2009, pp. 33ff).

tag cloud To visualize a set of tags and the “weight” of certain tags related
to a criteria (such as the number of appearances), tag clouds are used
by many web services. To emphasize tags according to the weight
function, larger character sizes or color are usually used.
Many web services use tag clouds to give a quick overview of a set of
tags related to a topic or a user. Due to the fact that clicking on one
tag of a tag cloud simply results in a view of all items tagged with
this one tag in most implementations, tag clouds can not be seen as a
navigational method.

10. With exceptions of links.

238

Glossary

In the tagstore dialog, a tag cloud is used to visualize tags proposed
by the tag recommender system as shown in Figure 5.2 (page 112).

tag completion An important usability feature of any tagging dialog is tag
completion. When the user starts typing the first letter, a drop-down
overlay shows all tags starting with this letter. The more letters the
user types, the more specific the list gets. At any time, the user can
select a complete tag from the list. This has several advantages. On
the one hand, users quickly see all tags that start with the sequence
of characters already typed in. On the other hand, many tags do not
have to be typed completely.
In the tagstore dialog screenshot of Figure 5.2 (page 112), tag comple-
tion of the tags “history” or “hifi” is shown.

tag recommender system Many tagging systems provide a tag recommen-
dation system (or short: recommender) in order to give an educated
guess, what (already known or unknown) tags the user might want
to use for the current item.
In the tagstore dialog, tag recommendations are visualized using a
tag cloud as shown in Figure 5.2 (page 112).

tagging The process of adding metadata (tags) like cues, keywords, or even
combinations of words to items is called tagging. The set of an al-
lowed length of characters per tag differs from implementation to im-
plementation: some products allow only single words, while others
allow arbitrary sequences of characters as tags.

TP test person

URL Uniform Resource Locator

(V)FAT The file system used in Microsoft Windows versions prior to xp.
It is still used for most memory sticks, external hard disks, and so
forth.

XFS Extended File System

239

Index

Alan Kay, 3

Alto, see Xerox Alto
Android, 122

Aristotle, 3

association, 12

associative navigation, see naviga-
tion, associative

Attribute Browser, 41

book, 3

bookmarks, 17, 24, 32, 49, 67

browsing, see navigation, 233

CAD, 21

categories, 16

categorizer, 70, 229
classification

automatic, 100

deferring, 100, 113

multiple, 13, 82, 86, 94, 100

overlap, 19, 32

problems, 14

wrong, 37

Clay Shirky, 85

cloud services, 4, 67

cognitive model, 79

collaborative, 23, 24, 68, 70

Colon Classification, 59

computer mouse, 22

controlled vocabulary, 71, 105, 116,
229

copy and paste, 22

costs, 79, 84

cross-tool behavior, 19

David Gelernter, 23

David Weinberger, 80, 85

deduplication, 79

dependent variable, 9

describer, 70, 229
desktop metaphor, 3, 15, 16, 77–82,

230
desktop search, 230
directory, 3, 23, 230
Douglas Engelbart, 22

Emacs, 26, 67, 208

email, 17, 32, 33, 37, 39, 45, 49, 53,
56, 67, 68, 72

Eric Freeman, 23

faceted navigation, 59, 87, 231

faceted search, 49, 56, 59, 231

Feldspar, 49
file system, 3, 45, 47, 64, 77, 86,

208, 231
semantic, 45

241

Index

filename, 38

filers, 12, 19, 189, 231
files, 231

archived, 19, 64, 81

ephemeral, 19

extension, 231
growing numbers, 64–66, 69

lost, 66, 104

ownership, 19

personal relation, 18

usefulness, 19

working, 19

Flamenco, 60
folder, 232

feeling of control, 53

hierarchy, 20, 42, 101, 232

GTD, 72

GUI, 4, 69, 110, 232

Haystack, 29

hFAD, 47
hierarchy, 43, 47, 51, 66, 76

of categories, 3

of folders, 232
problems, 77, 84

re-using, 32, 51, 87

strict, 235
hypertext links, 22

independent variable, 9

information retrieval, see retrieval
inode, 232
item, 233
Ivan Sutherland, 21

keyboard shortcuts, 70, 88

library systems, 16

Lifestreams, 23
LiFiDeA, 55
links, 11, 43, 56, 77, 78, 86, 233

broken, 79, 229
hard, 232
symbolic, 112, 236
usage of, 79

Marti Hearst, 59

Memacs, 67
memex, 11, 67

Menlo Park, 22

metadata, 46, 47, 55, 109, 115, 233
implicit, 44, 100

movable types, 3

Multics, 3

My Tags, 116, 126

MyLifeBits, 42, 67

navigation, 6, 23, 43, 51, 82–84, 94,
233

as implicit query, 96, 102

associative, 45, 57, 58, 94, 97,
100, 132, 229

by facets, see faceted naviga-
tion, 231

changes in, 66, 69

preferred over search, 19, 82–
84

using semantics, 46

NLS, 22

open source, 75, 109

Org-mode, 67, 208

partition, 234
path, 234
Personal Project Planner, see Planz

242

Index

Phlat, 37
pilers, 12, 19, 189, 231
piles, 14

PIM
devices, 67

planning, 20, 71

strategies, 20, 52, 61, 66, 68, 79

Placeless Documents, 28
Planz, 51
Presto, 28
printing, 3

priorities
changing, 13

Quantified Self, 45, 73, 234
Querium, 61
QUIS, 25

real world, 15, 16, 74

Remembrance Agent, 26
reminding, 12, 23, 25, 54, 74

retrieval, 16, 55, 82–84

problems, 17, 79, 101

search, 23, 26, 33, 40, 43, 48, 49, 58,
68, 76, 82, 85, 234

by facets, see faceted search
semantics, 30, 45, 47, 55, 87, 235

SemFS, 46
SenseCam, 44
shortcuts, 42, 112, 235
SIS, see Stuff I’ve Seen
Sketchpad, 21
Smart Folders, 28
social, 52, 73

pressure, 20

tagging, see tagging, social
Star, see Xerox Star

Stuff I’ve Seen, 33
summarizing, 23

tag
cloud, 236
completion, 76, 104, 166, 236
recommendation, 76

recommendations, 104, 114–115,
166, 236

TagFS, 47
tagging, 39, 41, 46–48, 56, 70, 76,

94, 96, 99, 104, 237
benefits, 104

optimizing, 104

seen as a burden, 104

social, 94, 235
tagstore, 107–140

TagTrees, 94–105, 132

example, 98

number of links, 95

supporting serendipity, 104

usage for file management, 96–
99

teleporting, 235
Time Machine, 25

time-oriented, 25, 86, 116

TimeScape, 25
TmSamba, 25

user, 69

acceptance, 25

behavior, 57, 88, 89

users, 105

learning, 70–73, 77, 105

motivation, 18

personal relation to files, 18

Vannevar Bush, 10

243

Index

visio-spacial methods, 16
Vista, 29
Vocabulary Problem, 84

WM, see WorkspaceMirror
WorkspaceMirror, 18, 32

Xerox
Alto, 3
Star, 5

244

List of Figures

1.1 Xerox Alto . 4

1.2 Screenshot: Xerox Star 8010 graphical user interface 5

2.1 Influence factors and feedback methods 10

2.2 TX-2 Operating Area – Sketchpad in use 21

2.3 Douglas Engelbart during his demonstration of NLS 22

2.4 Screenshot: Lifestreams interface, UNIX Viewport 24

2.5 Screenshot: TimeScape desktop 26

2.6 Screenshot: Emacs showing Remembrance Agent 27

2.7 Screenshot: Vista, a Presto interface 29

2.8 Screenshot: Haystack, Paper writing workspace 31

2.9 Screenshot: Stuff I’ve Seen (sis) interface, with the Top View. 34

2.10 Screenshot: sis interface, with the Side View. 36

2.11 Screenshot: Phlat . 38

2.12 Screenshot: Feldspar . 50

2.13 Screenshot: Planz . 54

2.14 Screenshot: LiFiDeA . 56

2.15 Screenshot: Faceted search on eBay.com 59

2.16 Screenshot: Flamenco faceted search interface 60

3.1 A dilemma with strict folder hierarchies 78

3.2 A humorous summary of not being able to organize 80

3.3 Tool optimization became stuck 91

4.1 The TagTree structure of an example file 97

4.2 Three different examples on how to navigate to an item . . . 98

4.3 Adding to folder hierarchies compared to TagTrees 103

5.1 The tagstore implementation layers 111

5.2 tagstore dialog screenshot . 112

245

List of Figures

5.3 tagstore Manager – My Tags . 116

5.4 tagstore Manager – Datestamps 117

5.5 tagstore Manager – Expiry Date 118

5.6 tagstore Manager – Re-Tagging 119

5.7 tagstore Manager – Rename Tags 121

5.8 tagstore Manager – Store Management 122

5.9 tagstore Manager – Sync Settings 123

6.1 FE1: Example background questionnaire from TP05, page one 148

6.2 FE1: Example background questionnaire from TP05, page two 149

6.3 FE1: Example feedback form from TP05 150

6.4 FE1: Photograph of the test environment 151

6.5 FE1: Screenshot of tagstore rev. 226 153

6.6 FE1: Windows Explorer showing files and mapped drives . . 155

6.7 Data processing from video to csv result files 156

6.8 FE1: Deterministic finite automaton (dfa): filing in folders . . 157

6.9 FE1: Dfa: tagging with tagstore 158

6.10 Summary of the distraction states 160

6.11 Dfa for refinding . 160

6.12 FE1: Filing performance for both conditions 163

6.13 FE1: Boxplot of the filing tasks 164

6.14 FE1: Re-finding performance for both conditions for file 2–6 . 165

6.15 FE1: Boxplot of the re-finding tasks 166

6.16 FE1: Filing performance within tagstore, sorted 167

6.17 FE1: Filing and re-finding performance of the fast performers 167

6.18 FE1: Boxplot: unique occurrences of folders and tags 168

6.19 FE1: Comparison of the folder and tag lengths 168

6.20 FE1: Comparison of associated number of folders and tags . . 169

6.21 FE2: Example background questionnaire from TP18, page one 174

6.22 FE2: Example background questionnaire from TP18, page two 175

6.23 FE2: Example feedback form from TP18, filing, page one . . . 177

6.24 FE2: Example feedback form from TP18, filing, page two . . . 178

6.25 FE2: Example feedback form from TP18, re-finding, page one 179

6.26 FE2: Example feedback form from TP18, re-finding, page two 180

6.27 FE2: Example feedback form from TP18, re-finding, page three181

6.28 FE2: Screenshot: tp filing in tagstore 184

6.29 FE2: The dfa for the filing task 185

246

List of Figures

6.30 FE2: The dfa for the tagging task 185

6.31 FE2: Bar Chart for filing in both conditions 187

6.32 FE2: Bar Chart for re-finding in both conditions 187

6.33 FE2: Boxplot of the filing tasks 188

6.34 FE2: Boxplot of the re-finding tasks 189

6.35 FE2: Comparison of the folder and tag lengths 192

6.36 FE2: Comparison of associated number of folders and tags . . 193

6.37 FE2: Boxplot: unique occurrences of folders and tags 194

6.38 FE2: User feedback for filing in both conditions 195

6.39 FE2: Gender differences when filing 196

6.40 FE2: Platform differences when filing 196

6.41 FE2: Differences related to study background when filing . . 197

6.42 FE2: Preferred condition for filing after filing 197

6.43 FE2: Affirmation to use tagstore on computer after filing . . . 198

6.44 FE2: User feedback for re-finding in both conditions 199

6.45 FE2: Gender differences when re-finding 199

6.46 FE2: Differences related to tagging experience when re-finding200

6.47 FE2: Non-Windows users rating re-finding 200

6.48 FE2: Preferred condition for re-finding after re-finding 201

6.49 FE2: Affirmation to use tagstore on computer after re-finding 201

247

List of Tables

2.1 Cross-tool profiles in PIM . 20

3.1 Statistics of my personal file system 65

4.1 Growth of the number of paths in TagTrees 96

5.1 Performance measurements TagTrees creation 136

6.1 FE1: Task performance . 162

6.2 FE1: Feature usage . 169

6.3 FE1: Results of the feedback questionnaire 170

6.4 FE2: User groups and test users 183

6.5 FE2: Total task times for all tps 186

6.6 FE2: Statistical significance for filing in folders 190

6.7 FE2: Statistical significance for filing in tagstore 190

6.8 FE2: Statistical significance for re-finding in folders 191

6.9 FE2: Statistical significance for re-finding in tagstore 192

249

